GEOTILL Inc.

Geotechnical Engineering • Subsurface Exploration • Environmental Services • Construction Testing and Material Engineering

GEOTECHNICAL ENGINEERING LIBRARY

GEOTILL

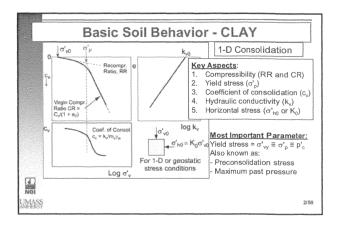
USA

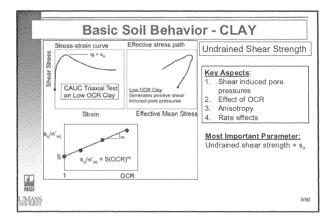
Phone 317-449-0033 Fax 317- 285-0609

info@geotill.com

Toll Free: 844-GEOTILL

Geotechnical, Environmental and Construction Materials Testing Professionals


www.geotill.com


Offices Covering all USA

CPTU Derived Soil Engineering Parameters for CLAY

- 1. Key Aspects of Clay Soil Behavior
- 2. Important engineering design parameters
- 3. Background and application of CPTU correlations for estimation of design parameters
- 4. Applied to Case Studies in follow-on lecture.

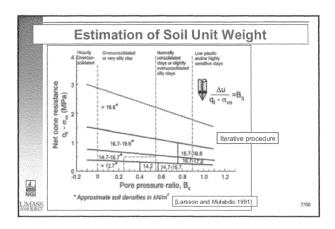
avass

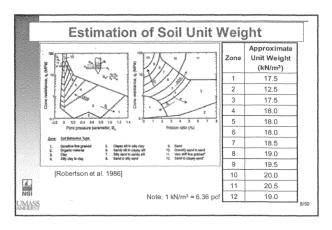
General Aspects of CPTU Testing in Clay

- 1. Penetration is generally undrained and therefore excess pore pressures will be generated.
- 2. Cone resistance and sleeve friction (if relevant) should be corrected using the measured pore pressures.
- 3. The measured pore pressures can also be used directly for interpretation in terms of soil design parameters.

UMASS

Interpretation of CPTU data in clay


- 1. State Parameters = In situ state of stress and stress history
- 2. Strength parameters
- 3. Deformation characteristics
- 4. Flow and consolidation characteristics
- 5. In situ pore pressure


In Situ State Parameters

- 1. Soil Unit weight: γ_w for computation of in situ vertical effective stress (σ'_{v0})
- 2. Stress history σ'_{p} and OCR = σ'_{p}/σ'_{v0}
- 3. In situ horizontal effective stress $\sigma'_{h0} = K_0 \sigma'_{v0}$

MASS

6/50

Stress History: OCR = σ'_p/σ'_{v0}

Estimation of Stress History (OCR or σ'_p) can be based on:

- · Direct correlation with CPTU data
- Pore pressure differential via dual element piezocone
- Indirect correlation via undrained shear strength

9/50

MASS

A.

CPTU Stress History Correlations

Wroth (1984), Mayne(1991) and others proposed theoretical basis (cavity expansion; critical state soil mechanics) for the following potential correlations between CPTU data and σ_p or OCR:

$$\begin{aligned} \sigma_{p}' &= f(\Delta u_{1} \text{ or } \Delta u_{2}) \\ \sigma_{p}' &= f(q_{t} - \sigma_{v0}) \\ \sigma_{p}' &= f(q_{t} - u_{2}) \end{aligned}$$

$$OCR = f(B_{q} = \Delta u_{2}/(q_{t} - \sigma_{v0}))$$

$$OCR = f(Q_{t} = (q_{t} - \sigma_{v0})/\sigma_{v0}'))$$

OCR = $f((q_t - u_2) / \sigma'_{v0})$

 $\sigma'_{p} = k(q_{t} - \sigma_{v0})$

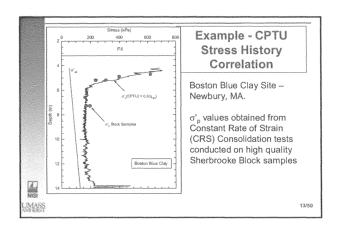
OCR = $k[(q_t - \sigma_{v0})/\sigma'_{v0}]$

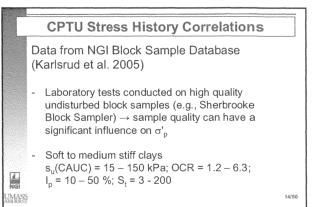
CPTU Stress History Correlations

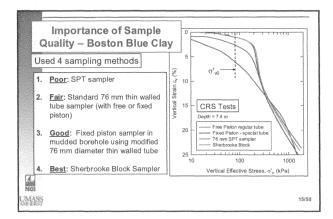
| Comparison | Comparis

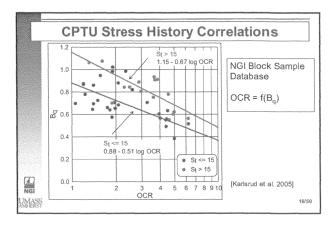
CPTU Stress History Correlations

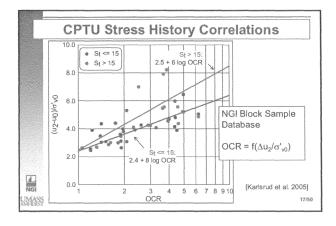
Comprehensive study initially by Chen and Mayne (1996) with later updates (e.g., Mayne 2005):

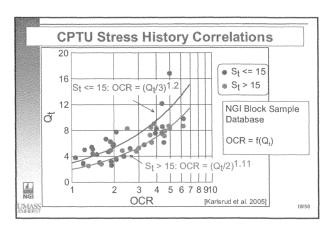

$$\sigma'_{p} = 0.47(\Delta u_{1}) = 0.53(\Delta u_{2})$$

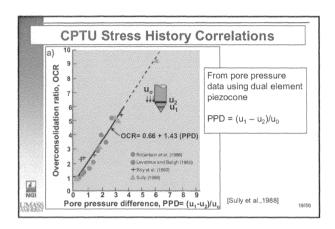

$$\sigma'_{p} = 0.33(q_{t} - \sigma_{v0})$$
 Most common

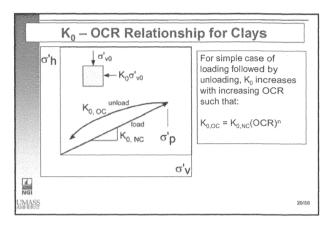

$$\sigma_{p}^{i} = 0.60(q_{t} - u_{2})$$

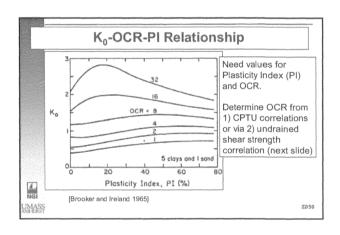

Note: values listed above are from best fit regressions; there is a sizable range in all values, e.g., k ranges from 0.2 to 0.5 for $\sigma'_p = k(q_t - \sigma_{v0})$

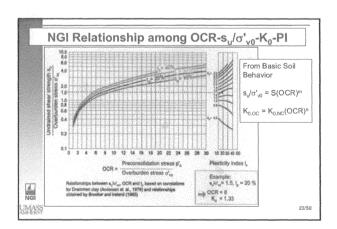

12/50

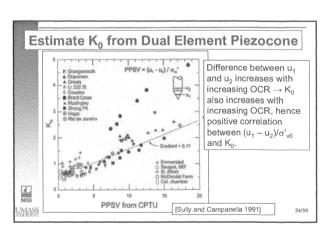












In Situ Horizontal Effective Stress There are currently no reliable methods for determining the in situ horizontal effective stress, $\sigma'_{h0} = K_0(\sigma'_{v0})$ from CPTU data For approximate (preliminary) estimates consider correlations based on: • OCR via CPTU correlations for OCR or s_u • Measured pore pressure difference

Shear Strength of Clays

For most design problems in clays (especially loading) the critical failure condition is undrained.

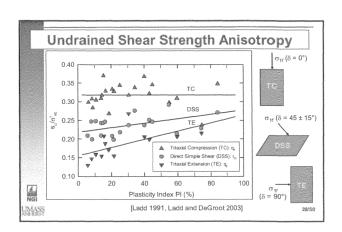
- 1. Undrained Shear strength s, (= c,)
- 2. Remolded undrained shear strength (s,,r) or Sensitivity, $S_r = s_u/s_{ur}$

Note: 1kPa = 20.9 psf MASS

25/50

Notes Regarding Undrained Shear Strength

- 1. The undrained shear strength is not unique
- The in situ undrained shear strength depends on many factors with the most important being: mode of shear failure, soil anisotropy, strain rate and stress history.
- 3. Therefore s_u required for analysis depends on the design
- Measured CPTU data are also influenced by such factors as anisotropy and rate effects
- The CPTU cannot directly measure $\boldsymbol{s}_{\boldsymbol{u}}$ and therefore CPTU interpretation of s, relies on a combination of theory and empirical correlations


MASS

Theoretical Interpretation CPTU in Clay

- 1. Existing theories for interpretation of su from CPTU data involve several simplifications and assumptions. Therefore existing theories must be "calibrated" against measured data
- 2. Most important to use realistic and reliable soil data from high quality tests conducted on high quality samples
- 3. At NGI key reference is to use $s_{\rm u}$ from Anisotropically consolidated triaxial compression (CAUC) tests conducted on high quality undisturbed samples. A secondary reference is to use the average s_u(ave) [or mobilized for stability problems] = $1/3[s_u(CAUC) = s_u(DSS) + s_u(CAUE)]$

MASS

27/50

Undrained Shear Strength from CPTU Data

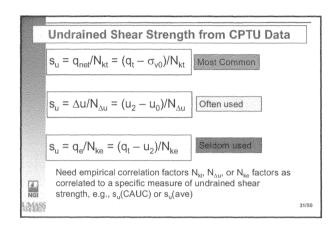
Theories for interpretation:

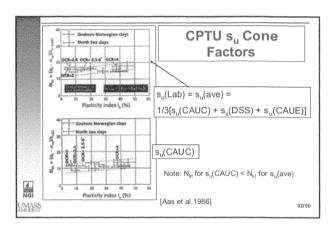
- 1. Bearing capacity
- 2. Cavity expansion
- 3. Strain path methods

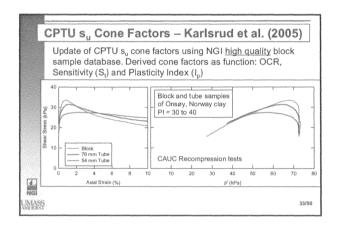
All result in a relationship of the form:

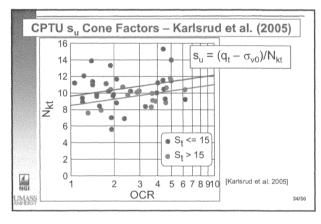
 $q_t = N_c s_u + \sigma_0$, where σ_0 could = σ_{v0} , σ_{h0} , σ_{m0}

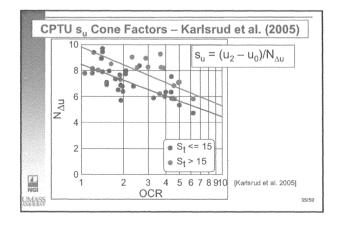
In practice most common to use:

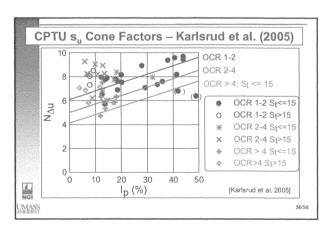

 $q_t = N_{kt}s_{tt} + \sigma_{v0}$, for which theoretically $N_{kt} = 9$ to 18.

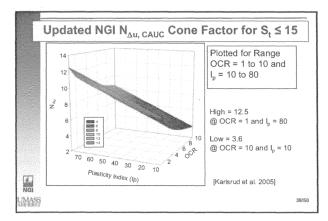



Undrained Shear Strength from CPTU Data


The empirical approaches available for interpretation of s,, from CPT/CPTU data can be grouped under 3 main categories:


- 1. s, estimation using "total" cone resistance
- 2. s, estimation using "effective" cone resistance
- 3. s, estimation using excess pore pressure




CPTU s_u Cone Factors – Karlsrud et al. (2005)

Best fit regression lines to plotted data for s_{..}(CAUC)

Cone Factor	Sensitivity S _t	Regression Equation	Standard Deviation
N _{kt}	≤15	7.8 + 2.5logOCR + 0.082l _p	0.197
	> 15	8.5 + 2.5logOCR	
N _{Δu}	≤ 15	6.9 - 4.0logOCR + 0.07l _p	0.128
	> 15	9.8 - 4.5logOCR	
N _{ke}	≤ 15	11.5 – 9.05Bq	0.172
	> 15	12.5 – 11.0Bq	

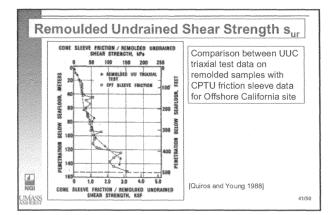
NG NG Best relationship (statistically) = $N_{\Delta u}$ Note: $N_{\Delta u}$ correlation uses direct measurement (u_2) and does not require use of q_1 which must be corrected for overburden stress in other correlations.

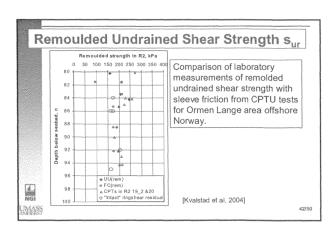
38/50

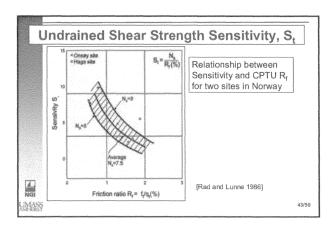
s_u from CPTU via CPTU-σ'_p correlations

For a given element of soil, the preconsolidation stress σ_p' is essentially unique whereas s_u which is strongly dependent on method of measurement and is therefore not unique.

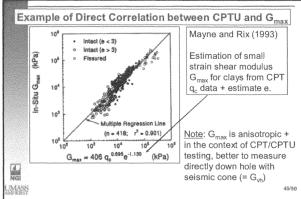
Alternative procedure to estimate s_u is first determine σ_p' (and hence OCR) from the CPTU data, then use established laboratory (e.g., CAUC, DSS) or in situ (e.g., FVT) relationships between s_u and σ_p' (or OCR) for a particular mode of s_u shear.

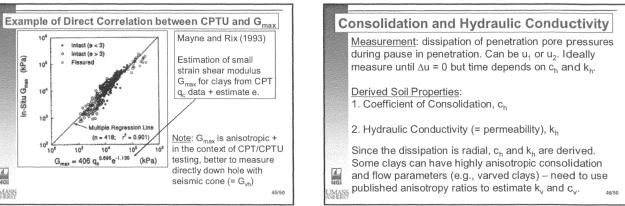

Examples

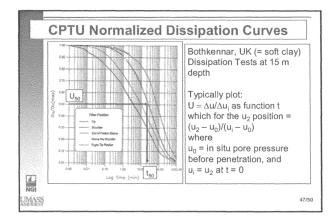

MASS

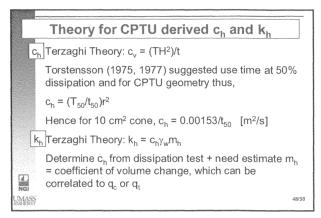

SHANSEP Equation (Ladd 1991)

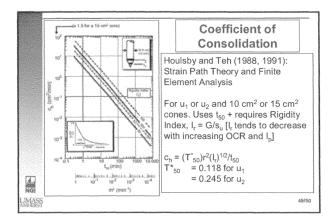
 $s_{u}/\sigma'_{v0} = S(OCR)^{m}$, with $S = s_{u}/\sigma'_{v0}$ at OCR = 1 e.g., $s_{u}(DSS)/\sigma'_{v0} = 0.23(OCR)^{0.8}$ $s_{u}(mob) = 0.22\sigma'_{p}$ Mesri (1975)

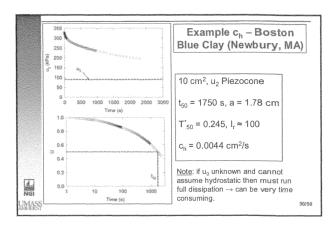

40/5








Deformation Parameters 1. Constrained Modulus - for 1-D compression, M 2. Undrained Young's Modulus, E, 3. Small strain shear modulus, G_{max} Two approaches for use of CPT/CPTU data to estimate deformation parameters: 1. Indirect methods that require an estimate of another parameter such as undrained shear strength s., 2. Direct methods that relate cone resistance directly to



Recommendations - CPTU Derived Soil **Engineering Parameters for CLAY**

- Do not eliminate sampling and laboratory testing
 Verify reliability of results and that undrained conditions prevail
 With increasing experience modify correlations for local conditions

Good CPTU Interpretation methods exist for:

- Soil Unit Weight (v_u) Stress History: OCR or σ'_p Undrained Shear Strength for s_u (CAUC) and s_u (ave) Small strain shear modulus (G_{max}) Coefficient of Consolidation (c_h)

- 3. Hydraulic Conductivity (k_h)

MASS