GEOTILL Inc.

Geotechnical Engineering • Subsurface Exploration • Environmental Services • Construction Testing and Material Engineering

GEOTECHNICAL ENGINEERING LIBRARY

GEOTILL

USA

Phone 317-449-0033 Fax 317- 285-0609

info@geotill.com

Toll Free: 844-GEOTILL

Geotechnical, Environmental and Construction Materials Testing Professionals

www.geotill.com

Offices Covering all USA

In-Situ Testing at Mn/DOT

- ***** SPT
- * Piezos

- SPT N₆₀
- ***** CPTU
- ***** Seismic CPT
- *** SMR-CPT**
- ***** CPT-Sampler
- ***** Vision Cone
- ***** CPT-Dissipation
- ***** DMT
- ***** DMT Dissipation
- ***** Electrical Resistivity
- Push-in CPT piezos

- ***** Capital investment
- ***** Upper Staff support
- ***** Champion
- * Willing to try new things
- ***** Learning Curve

SPT

* Standard Penetration Tortoise

- * All hammers calibrated to 60% efficiency
- ** Adjust stroke and/or hammer weight
- \times N₆₀
- Checked annually
- ***** Consultants required to follow
- * Still a poor test

- ***** CPTu
- ***** CPT dissipation
- ****** CPTu with soil samples
- * Vision Cone
- **★ SCPTu**
- **CPT** push-in piezos
- **★ SMR-CPTu** (RCPTu)

Cone Penetration Test (CPTu)

- ***** Good
 - 10 x faster
 - 100 x more data
 - 1/10 cost
- * Bad
 - No samples for lab testing
 - Rock, boulders

Mn/DOT's CPT Fleet

CPTu data

- ***** Swamp Delineation
- ** Define drainable layers (embankment settlement)
- Slope Stability
- * Prelim. Info.
- * Shallow and Deep foundation design
- * Pavement design

CPT – Dissipation Test

- * Dissipation rate for plastic soils
 - Time rate of settlement
 - Pile set-up potential
- * Aid in soil classification
- * Water table determination

CPT-Sampler

1 in. diameter

24 in. long

- ***** Moisture content
- * Organic content
- Sieve Analysis

CPT Sample Log

Vision Cone

Sapphire window

Visual data acquisition recording system

Clean Sand

Silty Sand

Silty fine Sand

Silty Clay

- * Measures shear wave velocities (Vs) of soil
- * Vs is directly related to low strain shear modulus and poisson's ratio
 - Stiffness parameters
- * Data used to predict
 - Settlement
 - Liquefaction potential

Seismic CPT Equipment

Seismic CPT Equipment

Seismic CPT Procedure

Seismic CPT Procedure 11.7706 ms 15.3924 ms) 21.0794 ms l 21.0794 ms 🗁 13.91 17.24 20.51 23.86 30.38 45.8248 ms 33.75 Test Depth 76. 37.08 76,75 ft. 40.31 54.9898 ms F01Y0701S.077 ₹ 43.61 46.89 64.1548 ms 50.23 🗘 75.1527 ms | 53.59 110 115 120 125 76.0692 ms 56.90 78.8187 ms 60.18 80.6517 ms 63.51 78.8187 ms 66.78 87.0672 ms k 70.07 90.7332 ms 94.3992 ms 96.2322 ms 76.75 80.03 99.8982 ms 83.26 450 OF Transportation 100 150 200 250 300 [milli:econds]

V=dist/t

Seismic CPT Data

Hole	donth (ft)	orrival (ma)	interval time (ma)	distance (ft)	\/o (ft/o)
A CONTRACTOR OF THE PARTY OF TH	depth (ft)	arrival (ms)	interval time (ms)	distance (ft)	Vs (ft/s)
c05	7.42	15.9215			
c05	10.51	20.7813	4.8598	3.09	
c05	13.8	25.7528	4.9715	3.29	661.77
c05	17.08	30.2706	4.5178	3.28	726.02
c05	20.39	35.2061	4.9355	3.31	670.65
c05	23.65	39.2397	4.0336	3.26	808.21
c05	26.99	42.7982	3.5585	3.34	938.60
c05	30.31	47.5043	4.7061	3.32	705.47
c05	33.59	51.0817	3.5774	3.28	916.87
c05	36.85	54.3943	3.3126	3.26	984.12
c05	40.18	59.3824	4.9881	3.33	667.59
c05	43.51	62.4703	3.0879	3.33	1078.40
c05	46.8	66.2708	3.8005	3.29	865.68
c05	50.08	67.696	1.4252	3.28	2301.43
c05	53.4	71.9715	4.2755	3.32	776.52
c05	56.68	74.5843	2.6128	3.28	1255.36
c05	59.98	77.4347	2.8504	3.3	1157.73

Seismic CPT Vs for soils

CPT-Piezos

* Push-in piezo

- * Water Table Determination
- ** Pore pressure monitoring for embankment construction

- Soil Moisture/Resistivity
- Electrical conductivity measurements
 - Stratigraphy
 - Ground Water Problems
 - Contaminates
 - Verify Electrical Resistivity measurements by Geologists

- Coupled to std. cone
- * Four electrode array
 - Brass ring electrodes separated by plastic insulator

- * Push standard CPTu
- # High frequency AC sent across electrodes
- Voltage is measured
- ** Voltage converted to resistance (function of conductivity)
- ** Resistance multiplied by calibration factor to arrive at Resistivity value (ohlm-meter)

Electrical Resistivity Survey

TH35W/Cliff Road

- Developed by Silvano Marchetti in 1970s in Italy
- * Introduced to N. America in 1980s
- **Used today in over 40 countries**
- * ASTM D 6635
- * Direct Push Test, no samples

- ** Wide range of soils (not suitable for gravels)
- * Quick, simple, reproducible test
- Primary use of data is to interpret common soil properties
 - Strength
 - Stiffness
- Settlement Analysis

DMT Equipment

0.6 in. thick

Flat, 2.4 in. diameter circular steel membrane (0.2 mm thick)

DMT Equipment

DMT Equipment

Control Box

Nitrogen

DMT Set-Up

Source: "The Flat Dilatometer Test (DMT) in Soil Investigations", Report of the ISSMGE Technical Committee 16 on Ground Property Characterization from In-Situ Testing 2001

* 1st Step – Push in blade to test depth

DMT Sequence

* 2nd Step Start Inflating membrane

Pressure gauge

Membrane collapsed from earth pressure

- * 3rd Step Continue to Inflate membrane
- * Take A reading (Po) (lift-off pressure)

Pressure gauge

Membrane flush with blade face

- * 4th Step Continue to Inflate membrane
- ** Take B reading (P1) (expansion pressure)

Pressure gauge

Membrane extended 1.1 mm

- * 5th Step slowly deflate membrane
- * Take C reading (P2) (penetration pore pressure)

Pressure gauge

0.05 mm expansion

- ★ 6th step Push in blade to next test depth
 - •8 in. minimum interval

DMT Raw Data

Project/Client 764 St. (BR) over 1-35 WB Location NW server of exist BR (avoided COI) Low Range Gage 0 0.0 bars Ground Surf. Elev HighRange Gage 0 0.05 bars Ground Water Dpt Rod Type Vertek CPT Casing Depth Rod Diameter 1.75 in cm Predrill Depth Rod Weight 7.44 kgf/m Initial Depth z, Frict. Red. Diam. 6.44 cm Tot. Vert. Stress o.				th. 30 A. m — m — m — m		Rig Type 30 ton 20		95 146 96 mm 15 mm bars	
Depth (Thrust	A	B bars	C bars	Depth ()	Thrust ()	A bars	B bars	C bars
		ΔA = 0.9	ΔB = 0.59		34	5985	1,6	7,95	.05
51	5200	2.90	9.8		35	8675	4,65	20.0	.04
6'	3600	1.7	7,0		Autor P				
	4000	1,4	6.45						
7'									
8	3950	2.6	8.2			_			
7' 8 9	3950 3495	2.6	10.2						
8	-		_						

DMT Data Reduction

SYMBOL	DESCRIPTION	BASIC DMT REDUCTION FORMULAE				
p_0	Corrected First Reading	$p_0 = 1.05 (A - Z_M + \Delta A) - 0.05 (B - Z_M - \Delta B)$	Z _M = Gage reading when vented to atm.			
p ₁	Corrected Second Reading	p ₁ = B - Z _M - ΔB	If $\Delta A \& \Delta B$ are measured with the same gage used for current readings A & B, set $Z_M = 0$ (Z_M is compensated)			
l _D	Material Index	$I_D = (p_1 - p_0) / (p_0 - u_0)$	u ₀ = pre-insertion pore pressure			
K _D	Horizontal Stress Index	$K_D = (p_0 - u_0) / \sigma'_{v0}$	σ' _{v0} = pre-insertion overburden stress			
E _D	Dilatometer Modulus	$E_D = 34.7 (p_1 - p_0)$	E_D is NOT a Young's modulus E. E_D should be used only AFTER combining it with K_D (Stress History). First obtain M_{DMT} = R_M E_D , then e.g. E $pprox$ 0.8 M_{DMT}			
K_0	Coeff. Earth Pressure in Situ	$K_{0,DMT} = (K_D / 1.5)^{0.47} - 0.6$	for I _D < 1.2			
OCR	Overconsolidation Ratio	$OCR_{DMT} = (0.5 K_D)^{1.58}$	for I _D < 1.2			
Cu	Undrained Shear Strength	$c_{u,DMT} = 0.22 \sigma'_{v0} (0.5 \text{K}_{D})^{1.25}$	for I _D < 1.2			
Φ	Friction Angle	$\Phi_{\text{safe,DMT}} = 28^{\circ} + 14.6^{\circ} \log K_{D} - 2.1^{\circ} \log^{2} K_{D}$	for I _D > 1.8			
C _h	Coefficient of Consolidation	$c_{h,DMTA} \approx 7 \text{ cm}^2 / t_{flex}$	t _{flex} from A-log t DMT-A decay curve			
k _h	Coefficient of Permeability	$k_h = c_h \gamma_W / M_h \ (M_h \approx K_0 M_{DMT})$				
γ	Unit Weight and Description	(see chart in Fig. 16)				
M	Vertical Drained Constrained Modulus	$\begin{split} &M_{DMT} = R_M \; E_D \\ &\text{if } \; I_D \leq 0.6 \qquad R_M = 0.14 + 2.36 \; log \; K_D \\ &\text{if } \; I_D \geq 3 \qquad R_M = 0.5 + 2 \; log \; K_D \\ &\text{if } \; 0.6 < I_D < 3 \qquad R_M = R_{M,0} + (2.5 - R_{M,0}) \; log \; K_D \\ &\qquad \qquad $				
\mathbf{u}_0	Equilibrium Pore Pressure	$u_0 = p_2 = C - Z_M + \Delta A$	In free-draining soils			

Source: "The Flat Dilatometer Test (DMT) in Soil Investigations", Report of the ISSMGE Technical Committee 16 on Ground Property Characterization from In-Situ Testing 2001

DMT Material Index

MINNESOTA DEPARTMENT OF TRANSPORTATION - GEOTECHNICAL SECTION

DILATOMETER (DMT) TEST RESULTS

UNIQUE NUMBER 68619

U.S. Customary Units

MINNESOTA DEPARTMENT OF TRANSPORTATION - GEOTECHNICAL SECTION

DILATOMETER (DMT) TEST RESULTS

UNIQUE NUMBER 68619

U.S. Customary Units

MINNESOTA DEPARTMENT OF TRANSPORTATION - GEOTECHNICAL SECTION

DILATOMETER (DMT) TEST RESULTS

UNIQUE NUMBER 68619

U.S. Customary Units

Case Study

SLS Bearing Capacity (LRFD)					
	SPT	DMT			
1 in. settlement	2.4 ksf	4.2 ksf			
1.5 in. settlement	3.8 ksf	6.7 ksf			

Thank You

