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SUMMARY 
 
 

The seismic cone penetration test (SCPTu) is the most efficient means for geotechnical 

site characterization and the evaluation of seismic ground hazards, as it provides up to 5 

independent readings in a single sounding:  cone tip stress (qT), sleeve friction (fs), 

penetration porewater pressure (ub), time rate of dissipation (t50), and downhole shear 

wave velocity (Vs). During SCPTu tests, a very large number of digital measurements are 

recorded. The overwhelming data provide more detailed information for engineering 

analysis, but also pose challenges in post-processing of “information overload”. In this 

thesis, software systems including ShearPro, ClusterPro, and InSituData, are developed 

to automate post processing of these SCPTu data. ShearPro is developed to automate the 

post-processing of the shear wave signals. ClusterPro uses the proposed three-

dimensional cluster analysis approach for soil stratification. InSituData facilitates the 

post processing of penetration data for seismic ground hazards analysis. A new three-

dimensional soil classification chart is also proposed in this thesis to help discern soil 

layers that may be subject to seismic ground hazards, such as loose liquefied sands and 

silty sands.  

 

These methods are then applied to SCPTu data collected at previously-identifed 

paleoliquefaction sites located in the New Madrid Seismic Zone (NMSZ). For 

liquefaction evaluation, the cyclic stress ratio (CSR) is computed using site response 

analysis by DeepSoil and a measured profile of shear waves derived from the 30-m 

SCPTU soundings and deep suspension loggings in AR and TN. The natural resistance of 

the soil to liquefaction, termed the cyclic resistance ratios (CRRs), is evaluated based on 



 xlv

both deterministic procedures and probabilistic procedures. Based on liquefaction 

evaluation results at selected paleoliquefaction sites, regional CRR criteria for 

liquefaction are developed for the NMSZ. As even the latest major earthquakes in NMSZ 

occurred nearly 200 years ago, aging effects might be an important factor to consider in 

utilizing the liquefaction criteria to assess the seismic parameters associated with the 

previous earthquakes. The aging effects in the NMSZ were investigated through large 

scale blast-induced liquefaction tests conducted by the USGS and supplemented by the 

author by series of CPTs. Then a procedure to estimate seismic parameters associated 

with previous earthquakes is proposed. It utilizes both the liquefaction criteria based on 

SCPTu tests and the empirical attenuation relations developed for the corresponding 

regions. The approach is validated through data evaluation related to the 1989 Loma 

Prieta earthquakes in California and then applied to previous historic earthquakes in the 

NMSZ. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER I  
 
 

INTRODUCTION 
 
 

1.1  Overview 

The seismic cone penetration test (SCPTu) is the most efficient means for geotechnical 

site characterization and the evaluation of seismic ground hazards, as it provides up to 5 

independent readings in a single sounding, including: cone tip resistance (qT), sleeve 

friction (fs), porewater pressure (u1 at the face or u2 at the shoulder), time rate of 

dissipation (t50), and shear wave velocity (Vs). During SCPTu field operations, a very 

large number of digital measurements are recorded, including recorded shear wave trains 

with 8000 data points at each depth, as well as thousands of data sets of tip resistance, 

sleeve friction, porewater pressure, and dissipation readings. This research develops new 

tools and methods to automate post processing of SCPTu data for geostratigraphic 

profiling, soil parameter determination, and liquefaction evaluation. These tools are then 

applied to SCPTu data collected in the New Madrid Seismic Zone (NMSZ). In this thesis, 

new methodologies are suggested for soil stratification and classification, predicting 

liquefaction potential during future earthquakes, as well as for back-calculating the 

seismic parameters associated with previous earthquakes. Figure 1.1 presents a graphical 

illustration of the major components of this research, including post processing of shear 

wave signals using ShearPro, geostratification using ClusterPro, interpretation of SCPTu 

data using InSituData, liquefaction evaluation using site response analysis, assessment of 

aging effects on SCPTu data, and estimation of seismic parameters associated with 

previous earthquakes. 

1



 

30 m

900 m

V s

f s u 2

q c

La
ye

r 1
, V

s1

La
ye

r 2
, V

s2

La
ye

r 3
, V

s3

La
ye

r 4
, V

s4

La
ye

r 5
, V

s5

SM
SI

M
 (2

00
2)

D
EE

PS
O

IL
 

(2
00

3)

V s
i

V s
j

V s
k

V s
l

V s
m

V s
n

C
SR

 1

C
SR

 2

C
SR

 3

C
SR

 4

C
SR

 5

Ea
rt

hq
ua

ke

In
Si

tu
D

at
a

Sh
ea

rP
ro

C
lu

st
er

Pr
o

So
il 

Pr
of

ile

C
R

R
 <

 C
SR

Li
qu

ef
ac

tio
n

Hundreds of 
years ago

C
SR

 >
 C

R
R

a m
ax

Empirical Relationship

M
ag

ni
tu

de
, M

w

Su
sp

en
si

on
 T

yp
e 

S-
W

av
e 

&
 P

-W
av

e 
Lo

gg
in

g 
(2

00
0)

B
la

st
in

g 
du

rin
g 

M
is

si
ss

ip
pi

 
Em

ba
ym

en
t S

ei
sm

ic
 

Ex
ci

ta
tio

n 
Ex

pe
rim

en
ts

 
(E

SE
E)

 b
y 

U
SG

S

Aging Effects

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0
50

10
0

15
0

20
0

25
0

q T
1

CSR

Li
qu

ef
ac

tio
n

N
o 

Li
qu

ef
ac

tio
n

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 10

0
15

0
20

0
25

0

V s
1 

CSR

Li
qu

ef
ac

tio
n

No
 L

iq
ue

fa
ct

io
n

A
cc

el
er

at
io

n 
Ti

m
e 

R
ec

or
d

Sa
nd

 
B

lo
w Sa

nd
 

di
ke

Li
qu

ef
ac

tio
n

30 m

900 m

V s

f s u 2

q c

La
ye

r 1
, V

s1

La
ye

r 2
, V

s2

La
ye

r 3
, V

s3

La
ye

r 4
, V

s4

La
ye

r 5
, V

s5

SM
SI

M
 (2

00
2)

D
EE

PS
O

IL
 

(2
00

3)

V s
i

V s
j

V s
k

V s
l

V s
m

V s
n

C
SR

 1

C
SR

 2

C
SR

 3

C
SR

 4

C
SR

 5

Ea
rt

hq
ua

ke

In
Si

tu
D

at
a

Sh
ea

rP
ro

C
lu

st
er

Pr
o

So
il 

Pr
of

ile

C
R

R
 <

 C
SR

Li
qu

ef
ac

tio
n

Hundreds of 
years ago

C
SR

 >
 C

R
R

a m
ax

Empirical Relationship

M
ag

ni
tu

de
, M

w

Su
sp

en
si

on
 T

yp
e 

S-
W

av
e 

&
 P

-W
av

e 
Lo

gg
in

g 
(2

00
0)

B
la

st
in

g 
du

rin
g 

M
is

si
ss

ip
pi

 
Em

ba
ym

en
t S

ei
sm

ic
 

Ex
ci

ta
tio

n 
Ex

pe
rim

en
ts

 
(E

SE
E)

 b
y 

U
SG

S

Aging Effects

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0
50

10
0

15
0

20
0

25
0

q T
1

CSR

Li
qu

ef
ac

tio
n

N
o 

Li
qu

ef
ac

tio
n

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 10

0
15

0
20

0
25

0

V s
1 

CSR

Li
qu

ef
ac

tio
n

No
 L

iq
ue

fa
ct

io
n

A
cc

el
er

at
io

n 
Ti

m
e 

R
ec

or
d

Sa
nd

 
B

lo
w Sa

nd
 

di
ke

Li
qu

ef
ac

tio
n

Fi
gu

re
 1

.1
  G

ra
ph

ic
al

 il
lu

st
ra

tio
n 

of
 se

is
m

ic
 g

ro
un

d 
ha

za
rd

 re
sp

on
se

 in
 th

e 
N

ew
 M

ad
rid

 S
ei

sm
ic

 Z
on

e 
 

by
 se

is
m

ic
 c

on
e 

pe
ne

tra
tio

n 
te

st
s (

SC
PT

u)
 

2



1.2  Seismic Cone Penetration Test (SCPTu) 

Seismic cone penetrometers combine the advantages of electronic readings of continuous 

penetration with a downhole measurement of shear wave velocity (Vs). Cone 

penetrometers are vertically advanced at the standard rate of 2 cm/sec using hydraulic 

pushing systems. Readings of tip resistance (qc), sleeve friction (fs), inclination (i), and 

pore pressure (u2) are taken every 1 to 5 cm by computer, giving unparalleled details on 

the soil layering profiles, while transient shear wave records and porewater dissipation 

curves are obtained at 1-m depth intervals during the addition of successive rods.  

 

Typically, the amplitude of each shear wave is recorded at a time interval of 0.025 ms, 

and thus each shear wave train contains approximately 8000 data for a total recording 

time of 200 ms. For a 30-meter sounding, a total of 240,000 wave data points and about 

15,000 points of readings of depth (z), tip resistance (qc), sleeve friction (fs), inclination 

(i), and pore pressure (u2) are recorded. At selected depths, piezo-dissipation recordings 

with time can be made to ascertain the permeability characteristics, thus adding more 

numbers. The overwhelming data sets provide more detailed information for engineering 

analysis, but also pose challenges in post-processing of “information overload”. In this 

thesis, software systems including ShearPro, ClusterPro, and InSituData, are developed 

to automate post processing of these SCPTu data, as illustrated in Figure 1.2. 

 

Of recent, the average shear wave velocity Vs in the top 30 m has paramount significance 

to seismic structural design. The 2000/2003 IBC (International Building Code) 

emphasizes the importance of the average Vs in the top 30.5 m (100 ft) by using it to 

3



define sites classification with respect to their seismic vulnerability. The measured Vs 

classifies the sites into different categories, which have significant impact on the design 

of structures. An accurate measurement of the Vs profile can ensure the correct design for 

seismic safety, as well as justify the economic cost.  
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Figure 1.2  Tools for automated post processing of seismic cone penetration data for 

geotechnical site characterization 
 

In engineering practice, the shear wave velocity (Vs) is usually determined from the 

recorded shear wave trains by manually picking the first arrival time of each signal, or 

alternatively by selection of the cross-over time of two paired sets of shear wave trains 
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recorded at the same depth but of opposite amplitude (Robertson et al., 1986; 

Campanella, 1994). These manual methods are time-consuming both in the field and in 

later data analysis. The derived results of shear wave velocities (Vs) may exhibit poor 

accuracy, since differences between the successive arrival times or cross-over times are 

very short. Small errors in hand-picking the arrival times can shift the value of Vs greatly 

from the correct value. Recently, algorithms for deriving shear wave velocity (Vs) from 

shear wave signals have been proposed (Campanella & Stewart, 1992; Baziw, 2002; 

Greening et al., 2003; Theron et al., 2003), and some of these can be implemented on 

computer to automate the process of deriving Vs from the shear wave signals. In this 

thesis, a software code (ShearPro) is developed to automate and facilitate the post-

processing of the shear wave signals. 

 

The CPTu penetration data can be used for stratification and soil classification. It is 

usually done by visually examining the CPTu data or comparing the data against 

empirical soil classification charts. The visual method depends largely on the experience 

of researchers, while the results based on soil classification schemes are associated with 

the selected charts. Neither of these can provide consistent and objective boundaries 

between soil layers. Cluster analysis in previous geotechnical research (Hegazy & 

Mayne, 1998, 2002) helps to delineate the stratigraphy objectively in soil deposits 

predominantly composed of clay. Since sleeve friction (fs) in clays is affected by soil 

sensitivity, the previous clustering relied only on the qT and u2 readings. In this thesis, a 

cluster analysis approach is proposed based on all the three channels of CPTu data: qT, fs, 

and u2, using normalized forms common to current practice: Q, F, B (Robertson, 1991). 
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The three-dimensional clustering can be used on any soil type (i.e., clay to silt to sand 

and mixtures) for stratification purpose. A three-dimensional soil classification chart is 

also proposed to integrate in the cluster analysis process. 

 

Many soil parameters can be derived from SCPTu data, based on interpretations from 

analytical, numerical, and empirical relationships. Some computer programs are available 

to automate this process as listed in Chapter 4. Most of these software programs cost 

from hundreds to thousands US dollars. Furthermore, the correlations used in these 

software packages are generally founded on old sometime antiquated methods of analysis 

(20 years +) as implemented by the software developers. Since new improved 

relationships are being developed on a frequent basis, the older programs are not able to 

adapt to the best available methods. New software (InSituData) is developed in this thesis 

to facilitate the post processing of penetration data. For liquefaction analysis, InSituData 

assesses the cyclic resistance ratio (CRR) using both stress-normalized tip resistance qT1 

(Robertson & Wride, 1998) and/or stress-normalized shear wave velocity Vs1 (Andrus & 

Stokoe, 2000). InSituData also interfaces directly with Excel and provides more 

convenience in deriving parameters from in-situ test data, particularly those from SCPTu 

soundings.  

 

1.3  New Madrid Seismic Zone (NMSZ) 

The New Madrid Seismic Zone (NMSZ) is the most extensive seismic region in the 

eastern United States, as indicated by the U. S. Geological Survey earthquake hazard map 

in Figure 1.3. Seismic cone penetration tests (SCPTu) were performed by the author at 
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selected sites in the NMSZ to evaluate the liquefaction potential over the large developed 

urban, suburban, and rural regions in this region. A number of the specific sites 

investigated are well-recognized paleoliquefaction locations under study by the USGS 

and Mid-America Earthquake Center. Moreover, many of the proposed measures 

discussed herein could also be applied to advantage in other seismic areas of the world.  

 

New Madrid Seismic ZoneNew Madrid Seismic Zone  
 

Figure 1.3  U. S. Geological Survey earthquake hazard map for the United States 
(http://pubs.usgs.gov/fs/fs-131-02/ fs-131-02-p2.html) 

 
Note: Color coding represents peak ground acceleration (PGA) having a 2 percent 
probability of being exceeded in the next 50 years for a firm rock site condition. 

 

Recent paleoliquefaction studies by Tuttle (1999) give improved estimates about the 

magnitude and location of epicenters of previous earthquakes in the NMSZ. They are 

used in this thesis to refine the scenario earthquakes for evaluating the liquefaction 
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potential at the paleoliquefaction sites. In this study, the acceleration on the bedrock is 

evaluated using the new program SMSIM developed by Boore (2002), and the cyclic 

stress ratio (CSR) is computed more rigorously using the newly-developed program 

DEEPSOIL (Park & Hashash, 2004). The CSRs derived from both detailed DEEPSOIL 

analyses and simple empirical correlations (e.g. Seed & Idriss, 1971) are compared for 

selected sites in the NMSZ. Specifically, at key paleoliquefaction sites, the obtained 

CSRs are referenced against the CRRs to assess the liquefaction potential of the test site. 

The CRRs are evaluated based on both deterministic procedures (e.g. Robertson & 

Wride, 1998; Andrus & Stokoe, 2000) and probabilistic procedures (e.g. Juang & Jiang, 

2000; Juang et al., 2001), using both normalized tip resistance (qT1) and normalized shear 

wave velocity (Vs1). Thus the liquefaction probabilities are also given for the analyzed 

test sites in this study. Based on the liquefaction evaluation results at the 

paleoliquefaction sites, regional criteria for liquefaction are developed herein for the 

NMSZ. 

 

The SCPTu test can serve as a valuable tool for paleoliquefaction studies in the New 

Madrid Seismic Zone (NMSZ). Since almost all the field test data used in developing the 

liquefaction criteria are collected after the corresponding earthquakes, the criteria are 

more appropriate to estimate the seismic parameters associated with previous earthquakes 

(Chameau et al., 1991a; Olson et., 2001). As even the latest major earthquakes in NMSZ 

occurred nearly 200 years ago, soil aging effects should be an important factor to 

consider in utilizing these criteria to assess the seismic parameters associated with the 

previous earthquakes. Two large-scale blasting tests were conducted by the USGS that 
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resulted in localized induced liquefaction during the Mississippi Embayment Seismic 

Excitation Experiments (ESEE). Seismic cone penetration tests (SCPTu) were made 

before, immediately after, one day, and 8 months later following the large blasts. 

Considering the variance range caused by soil variability and equipment error, aging 

effects on field cone penetrometer measurements in NMSZ were not observed to be very 

substantial. Therefore, soil aging effects are not considered significant for 

paleoseismology studies in this thesis.  

 

Finally, procedure to estimate seismic parameters associated with previous earthquakes is 

proposed in this thesis. It utilizes both the liquefaction criteria based on SCPTu tests and 

the empirical attenuation relations developed for the corresponding regions. The 

approach is validated through data evaluation related to the 1989 Loma Prieta 

earthquakes in California and then applied to previous earthquakes in the NMSZ. 

 

1.4  Organization of Thesis 

This thesis presents some new techniques for post-processing the SCPTu data, and 

summarizes some new insights into the seismic response of soils in the NMSZ using 

enhanced post-processing of SCPTu data. 

• Chapter II summarizes the techniques and features of the software, ShearPro for 

deriving shear wave velocity from shear wave signals. 

• Chapter III presents the procedures for a three-dimensional cluster analysis for soil 

stratification, and a three-dimensional soil classification chart that gives consistent 
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classification results. The software program ClusterPro that implements the three-

dimensional cluster analysis is also introduced. 

• Chapter IV introduces the software, InSituData, which is developed to facilitate the 

post processing of penetration data for seismic ground hazards analysis. 

• Chapter V reviews the liquefaction criteria based on tip resistance and shear wave 

velocity of SCPTu soundings.  

• Chapter VI discusses liquefaction evaluation considering local site effects. Case 

studies are performed at the paleoliquefaction sites in the NMSZ. 

• Chapter VII focuses on the aging effects of sands and those observed in the NMSZ 

during the Embayment Seismic Excitation Experiments (ESEE). 

• Chapter VIII proposes an approach to estimate seismic parameters associated with 

previous earthquakes. It is validated through the 1989 Loma Prieta earthquake and 

applied to the previous earthquakes in the NMSZ. 

• Chapter IX presents the conclusions of this thesis and recommendations for future 

research. 

• Appendix A gives a more detailed introduction about the NMSZ. 

• Appendix B discusses the paleoliquefaction sites in the NMSZ, where SCPTu tests 

have been performed. 

• Appendix C gives a brief introduction to the non-paleoliquefaction sites in NMSZ, 

where SCPTu tests have been performed. 

• Appendix D presents the results of liquefaction evaluation for the paleoliquefaction 

test sites. 
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• Appendix E is the instructions for using the program ShearPro 1.3 to derive shear 

wave velocity from downhole shear wave signals. 

• Appendix F is the instructions for using the program ClusterPro 1.0 to do three-

dimensional cluster analysis. 

• Appendix G is the instructions for using the program InSituData 1.0 to process 

SCPTu data. 
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CHAPTER II 
 
 

AUTOMATED POST-PROCESSING OF SHEAR WAVE SIGNALS 
 
 

2.1  Synopsis 

Shear wave velocities (Vs) can be determined by either laboratory or field methods, as 

illustrated in Figure 2.1 (Schneider, 1999). In the laboratory, the small strain shear 

modulus (Gmax) can be measured on undisturbed soil samples using the resonant column, 

torsional shear, piezoelectric bender elements, as well as triaxial apparatus with internal 

local strain measurements (Woods, 1994). The shear wave velocity can thereby be 

determined using Ts GV ρmax= , where Tρ  is the total unit mass density. Of note, 

undisturbed sampling can only be conducted in clayey or silty soils, as clean quartz sands 

and granular materials are nearly impossible to capture in an undisturbed state. Moreover, 

the issue of sample disturbance in clays and silts is of paramount concern since the 

quality of results is greatly affected. The derived magnitude of Gmax is reduced 

considerably by disturbances caused by drilling, tube insertions, extraction, sealing with 

hot was, transportation, extrusion in the lab, trimming, and mounting of the specimens 

(e.g. Stokoe & Santamarina, 2000). Therefore, for avoidance of these issues, the Vs 

profile can be measured by field methods, such as crosshole test (CHT), downhole test 

(DHT), suspension logging, seismic refraction, seismic reflection, and spectral analysis of 

surface waves (SASW), as shown in Figure 2.1. A more detailed review of various field 

Vs methods is given by Campanella (1994).  
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Figure 2.1  Field and laboratory methods to determine shear wave velocity  
(Schneider, 1999) 

 

The traditional reference field test for determination of Vs is the crosshole test (CHT), per 

ASTM D 4484 standards. However, the CHT is a very expensive means to defining the 

Vs profile, as it requires at least two to three cased boreholes that are subsequently 

grouted and checked for inclination variances,. A 30 m profile by CHT can cost from US 

$10k to $15k. The downhole test (DHT) is a reasonable and economical alternative using 

only a single borehole by conventional drilling and sampling methods. A comparable 30 

m downhole test (DHT) would cost about US $6k to $8k. Methods using Rayleigh waves 

[spectral analysis of surface waves (SASW), continuous surface wave method (CSW), 

multichannel analysis of surface wave (MASW)] or refracted waves are good 

alternatives, yet being noninvasive, also require guesswork on the layering sequence or 

separate borings or soundings to determine the strata depths, thickness, and soil types.  

13



 

Downhole tests (DHT) can be performed in cased boreholes or using direct-push 

technology, such as the seismic cone penetration test (SCPTu) or seismic dilatometer 

(SDMT). By processing the shear wave signals from downhole testing, the profile of 

shear wave velocity Vs with depth can be calculated. The shear wave velocities given by 

the SCPTu tests have been shown to be comparable to those obtained by crosshole tests 

in both sand and clay deposits (Robertson et al., 1986). The shear wave velocity is used 

in deriving the small-strain shear modulus ( 2
max sTVG ρ= ), which is the initial soil 

stiffness needed for site amplification analyses in evaluating seismic liquefaction 

potential. The value of Gmax is also fundamental in the evaluation of stress-strain behavior 

and foundation response in soils (Burland, 1989; Tatsuoka & Shibuya, 1991; Mayne, 

2001). An objective and quality assessment of the shear wave signals collected by 

downhole testing can be crucial in obtaining information related to the soil properties. 

 

In most commercial systems, the seismic cone penetration test uses a pseudo-interval 

time stepping, as illustrated in Figure 2.2. The shear wave velocity Vs is calculated by 

dividing the incremental traveling distance to the geophone by the incremental arriving 

time between successive recorded shear waves (Campanella et al., 1986). Several 

methods exist for calculating the time interval between shear waves. As the DHT was 

developed more than 30 years ago (e.g. Hoar & Stokoe, 1978), simple data processing 

schemes were derived because the recordings were analog. The most straight-forward one 

is to estimate the time that the wave first arrives to the geophone, as shown in Figure 2.3, 

and the time interval is the difference between the first arrival times of the corresponding 
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shear waves. But the first arrival time is usually hard to discern and requires much 

experience. This is because the first arrival point is usually masked by earlier arrival of 

the faster compression (or P) wave. In addition, the recorded waveforms show additional 

signals from other waves reflected by the layer interfaces, as well as extraneous noises 

and electromagnetic interference. Of additional note, the manual processing of data is 

tedious and time-consuming. 
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Figure 2.2 Conceptual configuration of downhole seismic test using pseudo-interval time 
stepping  

 

The cross-over method requires a shear beam source to be hit a minimum of two times: 

(a) an initial strike and (b) a second strike in the opposite direction. Therefore, two shear 
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wave trains of opposite amplitude are recorded at the same depth, and the cross-over time 

is defined as that time that the first clear cross-over of the two shear waves occurs 

(Robertson et al. 1986). Example shear wave trains recorded after a left and a right strike 

are shown in Figure 2.3 (a) and (b), respectively, and they are superimposed in Figure 2.3 

(c), which indicates the cross-over time of the two waves. Thus, the time interval is the 

difference between successive cross-over times at consecutive depths. Paired left- and 

right-strikes, however, require two events. Moreover, since much reliance is placed on 

the single crossover point, most CPT service firms check the repeatability of each left and 

right strike, thereby a total of 4 strikes at each depth, prolonging the CPT field testing 

time. Furthermore, the cross-over method only uses the time information of a single point 

in the wave train, yet the full wave train can contain thousands of data points, which are 

not considered in the evaluation. Sometimes, the cross-over time can be shifted because 

of signal disturbance, particularly if a bad recording is taken on either the left or right 

strike (Campanella & Stewart, 1992).  

 

With modern data acquisition and digital storage, improved post processing of shear 

wave arrival times can be made using (a) cross-correlation, and (b) phase-shifting. Cross-

correlation is an alternative approach to calculate the time interval by aligning the signal 

trains in the time axis, and it utilizes considerably more information in the collected shear 

waves than the first arrival and first cross-over methods (Campanella & Stewart, 1992). 

The phase-shift method is a frequency-domain technique, which uses the phase difference 

between signals to measure the travel velocity of the signal. This approach was used to 

derive the shear wave velocity in bender element experiments (Greening et al., 2003; 
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Theron et al., 2003), and it can also be applied to analyze the shear wave signals collected 

by downhole seismic tests. Baziw (2002) suggested the use of forward modeling and the 

down hill simplex method to derive the shear wave velocity recursively, which considers 

the refraction of the waves at the soil interfaces, but it is much more complex. It also 

requires investigation of the geometry of the stratigraphic profile and a good estimation 

of the wave velocity in each layers, otherwise nonsensical results may occur. In this 

thesis, the cross-correlation and phase-shift methods are discussed. They are implemented 

into a stand-alone software program (ShearPro) to automate processing of the shear wave 

signals collected by SCPTu soundings, and/or other downhole tests (DHT, SDMT). The 

derived Vs results are compared with those obtained by other processing methods. 

 

2.2  Cross-Correlation Method 

Cross-correlation is a method that can be easily implemented on a computer to derive the 

shear wave velocity from raw wave train data. It refers to the correlation of two 

independent series, and can be used to measure the degree at which the two series are 

related. Suppose x(t) and y(t) are two continuous signals with respect to time t, the cross-

correlation function of x(t) and y(t) for a time shift s is defined as  

( ) ( ) ( )dtstytxsz += ∫
∞

∞−
     (2-1) 

 

For two signals of the same shape, the cross-correlation function may be used to calculate 

their difference in their arrival times, which is equal to the time shift that results in the 

peak of the cross-correlation function.  
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Originally, the cross-correlation was done in the frequency domain, since it required 

relatively little computation time compared with that done directly in time domain 

(Campanella & Stewart, 1992). However, with the computer speed having doubled every 

eight months, the required computation time in the time domain is insignificant in 2005.  

 
 

First
Arrival

First
Trough

First
Peak

t = 0

time

A
m

pl
itu

de

Left
Strike

 
(a) 

 

First
Arrival

First
Peak

First
Peak

t = 0

time

A
m

pl
itu

de

Right
Strike

 
(b) 

 

First
Crossover

t = 0
time

A
m

pl
itu

de

Overlay

 
(c) 

 
Figure 2.3  First arrival time and first crossover time of shear wave signals: (a) Shear 

wave train recorded after a left strike; (b) Shear wave train recorded after a right strike; 
(c) Overlay of the paired shear wave trains in (a) and (b) 
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It is sometimes more advantageous to do cross-correlation in a statistical way in the time 

domain, since its physical meaning is clear and it can provide some regression parameters 

to evaluate the quality of the process. Assume N pairs of observations on two shear wave 

signals in time domain, which are xi and yi, where i=1, … , N. If the signal yi is shifted 

forward along the time axis for a certain amount of time, which is equal to k times of the 

sampling interval, the two signals become xi and yi+k. Therefore, the first N-k data points 

of signal xi can be plotted against the last N-k data points of yi on a scatter plot, and the 

coefficient of determination (r2) can be used to evaluate the correlation between them, 

according to: 

( )
∑∑

∑
−−

−−
=

+

+
22

2
2

)()(
))((
yyxx

yyxx
r

kii

kii     (2-2) 

where x  is the average of the first N-k data points of signal xi, and y  is average of the 

last N-k data points of yi. The time shift that gives the highest value for the coefficient of 

correlation r corresponds to the best fit time interval between the signals. Two 

hypothetical sine waves (signal A and signal B) are presented in Figure 2.4 (a). They are 

identical in shape, except a time offset between them. The digital observations of these 

signals are assumed to be the solid dots as shown in this figure. The amplitudes of the 

digital observations from signal A are plotted against those of the corresponding 

observations from signal B in Figure 2.4 (b), assuming different amount of time offset Δt. 

Linear regression is performed for these points, and it can be seen that the coefficient of 

determination r2 reaches a maximum value of 1 when the time offset Δt = 2 ms. 

Therefore, the time offset between signal A and B is 2 ms. 
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Figure 2.4  Cross-correlation on two hypothetical sine wave signals: (a) The waves in 
time domain; (b) Scatter plots of amplitude of signal A against that of signal B with a 

certain amount of time offset 
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Cross-correlation works well if two signals are of the same shape. In true-interval 

downhole testing, the initial main wave cycle is very well matched. However, attenuation 

levels for different frequency components of the shear wave are not the same, and those 

with high frequencies are more easily attenuated as they travel through the soil media. 

Thus, the latter parts of the waveform may not match well at all due to different 

attenuation, as well as due to overlapping signal, from nearby refracted and reflected 

waves. For pseudo-downhole testing, the seismic source can also influence the signal 

shape if it is not very repeatable in generating the shear waves. Therefore, it is impossible 

for two signals collected at different depths to be of the exactly same shape. Realizing the 

portions of the signal other than the main wave can affect the value of derived shear wave 

velocity, Campanella and Stewart (1992) proposed use of a window to select a portion of 

the signal, which is the main shear wave, while clipping off the latter trailing portions of 

the signal by setting their amplitudes to zero.  

 

2.3  Phase-shift Method 

The geophone records the signal generated by the source and transmitted through the soil 

for a distance. If the damping, refraction, and reflection are not considered, ideally the 

signals recorded at different depths are the same, except the signal recorded at the greater 

depth has some delay from the other one, and the delay is the travel time of the wave 

between the two depths. Assume the signal recorded at a shallow depth is x(t), which is a 

continuous signal in the time domain, and then its Fourier transform X(f) is 

    ( )∫
∞

∞−

−= dtetxfX ftj π2)(     (2-3) 
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Suppose the delay is a constant time tΔ , the signal recorded at a greater depth should be 

x(t- tΔ ),  and the Fourier transform of x(t-t0) is 

( ) ( )fXedtettxfX tfjftj Δ−∞

∞−

− =Δ−=′ ∫ ππ 22)(    (2-4) 

From this equation, we can see that the delay tΔ  shifts the phase for the amount of tfΔπ2  

for each frequency component, which is a function of the frequency f (Brigham, 1988). 

Since each frequency component would have a phase change when it travels for a certain 

distance, the phase shift of the sinusoids can be plotted against their frequency, and the 

slope of the linear regression (k) of the data points should be tΔπ2 , where tΔ  is the 

arrival time interval between two shear wave signals. Therefore, tΔ  can be derived 

through the following equation: 

( )π2/kt =Δ       (2-5) 

Figure 2.5 (a) presents a very simple example with two hypothetical signals (A and B). 

They are identical in shape, except for a time offset between them. Both signals are 

composed of two frequency wave components in frequency domain, which are f = 159.2 

Hz and f = 318.3 Hz. The two components of the signals are plotted in Figures 2.5 (b) and 

(c), respectively. The phase difference between the f = 159.2 Hz components of the two 

signals is 2, and that between the f = 318.3 Hz components is 4. The phase differences are 

plotted against the frequencies of the two components in Figure 2.6, and the slope for the 

line connecting the two points is k = 0.0126 sec. Therefore, the time offset between the 

two signals is 2 ms based on equation (2-5). 
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Figure 2.5  Two hypothetical signals that both have components of frequency f = 159.2 
Hz and f = 318.3 Hz: (a) Signals A and B in time domain;  

(b) The frequency f = 159.2 Hz components in signal A and B;  
(c) The frequency f = 318.3 Hz components in signal A and B. 
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Figure 2.6  Phase shift of the two components between  
signal A and B shown in Figure 2.5 

 

2.4  Worked Examples 

The cross-correlation and the phase-shift methods are both theoretically robust and 

simple. To illustrate these concepts, both methods are applied to process the shear wave 

signals collected at two sites, including the Nodena Farm site in Wilson, Arkansas and 

the Coca-Cola site in Atlanta, Georgia. 

 

2.4.1  Nodena Farm Site 

The Nodena farm site is a paleoliquefaction site located northeast of Wilson, Arkansas 

(Tuttle et al., 2000). The site is underlain by layers of interbedded alluvial clay and sand 

sediment from the Mississippi River. Additional details about this site are presented in 

Appendix B. Figure 2.7 shows the paste-up of the collected shear wave signals at 1-meter 

intervals with their amplitudes normalized, that is, the amplitude is divided by the largest 
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amplitude of the signal in the time domain. The largest wave corresponds to the first 

cycle arrival of the shear wave. 
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Figure 2.7  Shear waves recorded at one-meter depth interval by a representative SCPTu 

sounding performed at the Nodena Farm paleoliquefaction site in Wilson, AR 
 

Figure 2.8 (a) shows the shear wave trains collected at depths of 4.82m and 5.85m from 

the seismic piezocone sounding performed at the Nodena Farm site. They have similar 

shape, but the shear wave train recorded at the depth of 5.85 m is delayed to some extent 
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compared with that recorded at the depth of 4.82 m. Figure 2.8 (b) presents the 

coefficient of determination r2 calculated from equation (2) during cross-correlation, with 

different amounts of time shift set between the two wave trains. The time shift is 6.675 

ms corresponding to the maximum coefficient of determination r2 = 0.9757.  
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Figure 2.8  Cross-correlating the shear wave signals collected at depths of 4.82m and 

5.85m from the SCPTu sounding performed at the Nodena Farm site, Wilson, AR:  
(a) Shear wave trains at two consecutive depths;  

(b) Coefficient of determination with different time shifts. 
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For the example shown in Figure 2.8, the distance between the seismic source and the 

central axis of the cone penetrometer is 0.75 m. Thus, the traveling distance for the shear 

wave at the depth of 4.82 m 878.475.082.4 22 =+  m, and that at the depth of 5.85 m is 

898.575.085.5 22 =+  m.  By dividing the difference between the traveling distances 

( 02.1=Δd  m) of the two signals with the time shift ( 675.6=Δt  ms) obtained by the 

cross-correlation method, the derived shear wave velocity tdVs ΔΔ=  = 152.8 m/s. The 

corresponding mid-depth is 5.34 m. 

 

Phase-shifting of the shear waves will now be applied to the same data set. Fast Fourier 

transform is applied to the signals shown in Figure 2.8 (a), and their amplitudes in 

frequency domain are presented in Figures 2.9 (a) and (b), respectively. Most energy of 

the shear wave signals are concentrated in the frequency range from 20 to 60 Hz, and it is 

reasonable to believe that frequency components in this range are not significantly altered 

by noise. Therefore, the phases of the two signals are shown in Figures 2.10 (a) and (b) 

for the frequency components in the range from 20 to 60 Hz, and the phase differences of 

the corresponding frequency components are plotted in Figure 2.10 (c). Theoretically, the 

phase shift should be zero as the frequency converges to zero, and thus the origin is set as 

the control point for the regression. Linear regression that is forced through the origin is 

performed on the data points of phase shift, with its equation and coefficient of 

determination, r2, also shown in Figure 2.10 (c). Since the measured slope is k = 0.0419, 

the difference of the arrival time of the two signals is 

( ) msskt 67.61067.6)2/(0419.02 3 =×===Δ −ππ , and thus the shear wave velocity Vs 

= 152.9 m/s, which agrees well with that derived using the cross-correlation method. The 
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coefficient of determination, r2, indicates the quality of the regression, and the higher the 

value of r2, the more accurate the derived shear wave velocity.  
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Figure 2.9  Shear wave signals in frequency domain from a SCPTu sounding performed 
at the Nodena Farm paleoliquefaction site, Wilson, AR: (a) Shear wave signal in 
frequency domain at depth = 4.82 m; (b) Shear wave signal in frequency domain  

at depth = 5.85 m. 
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Figure 2.10  Phase-shifting of shear wave signals collected at depths of 4.82m and 5.85m 
by a SCPTu sounding performed at the Nodena Farm site, Wilson, AR: (a) Phase of the 
frequency domain components for shear wave signal at depth = 4.82 m; (b) Phase of the 

frequency domain components for shear wave signal at depth = 5.85 m; (c) Linear 
dependency between frequency and phase shift of the two waves. 
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Figure 2.11  Results generated by the cross-correlation and phase-shift methods  

for the SCPTu data from the Nodena Farm site, Wilson, AR: (a) Shear wave velocity 
profiles; (b) Coefficients of determination with depth.  

 

Figure 2.11 (a) shows the profiles of Vs calculated by both the phase-shift method and the 

cross-correlation method for this sounding. The results calculated by these two methods 

are very consistent. Figure 2.11 (b) presents the coefficient of determination, r2, used for 

the cross-correlation method and the phase-shift method. They generally decrease with 

depth, because as the shear waves travel deeper, the signals become weaker due to the 
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dissipation of wave energy. Consequently, the shape of the signal and the phase of the 

frequency components are more likely to be altered by noise, thus affecting the statistical 

fitting. Over the full depth of 20 m, the coefficient of determination at Nodena site is 

quite high for the cross-correlation procedure (generally r2 > 0.90), while for the phase-

shift method, the r2 falls to 0.80 at depths below 15 m. 

 

2.4.2  Coca-Cola Site 

As another illustrative example, Figure 2.12 shows the paste-up of the shear wave signals 

collected at a construction site at the headquarters of Coca-Cola Company in Atlanta, 

Georgia. When the sounding was being performed, some construction activity was 

ongoing at the site, thus affecting shape of the measured wave trains to some extent. 

Figure 2.13 (a) shows the shear wave trains recorded at the depths of 4.92 and 5.95 m, 

and their coefficient of determination, r2, is plotted versus time shift in Figure 2.13 (b). 

The time shift tΔ  is 4.475 ms corresponding to the maximum value of r2 = 0.7406. Since 

the traveling distance for the two shear wave signals are 4.977 m and 5.997 m 

respectively, the calculated shear wave velocity Vs is 223.5 m/s. 

 

For the phase-shift method, the amplitudes in frequency domain for the shear wave 

signals at the depths of 4.92 m and 5.95 m are presented in Figures 2.14 (a) and (b), 

respectively. The energy of these two shear wave trains are concentrated in the frequency 

range from 20 to 100 Hz, which is wider than that in the Nodena farm site. Figures 2.15 

(a) and (b) present the phases of the frequency components that are in the range from 20 
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to 100 Hz. The phase differences between the corresponding frequency components are 

plotted in Figure 2.15 (c), and the linear regression that is forced through the origin 

determines a slope k = 0.0314 with coefficient of determination r2 = 0.8201. Therefore, 

the time shift ( ) 00.52 ==Δ πkt  ms, and the calculated shear wave velocity Vs is 200.0 

m/s. 
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Figure 2.12  Shear waves recorded at one-meter depth intervals by the SCPTu sounding 

performed at the Coca-Cola Site, Atlanta, GA  
Note: Signals include noise from ongoing construction activities 
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Figure 2.13  Cross-correlating the noisy shear wave signals collected at depth of 4.92m 

and 5.95m from the SCPTu sounding performed at the Coca-Cola site, Atlanta, GA:  
(a) Shear wave trains at two consecutive depths;  

(b) Coefficient of correlation with time shift. 
 

The derived shear wave velocities for the Coca-Cola site calculated by both the cross-

correlation method and phase-shift method are shown in Figure 2.16 (a). It can be seen 

that the results are relatively consistent until the depth exceeds 13 m. Figure 2.16 (b) 

shows the coefficient of determination, r2, for both the cross-correlation and phase-shift 

methods, and similar to the last example, they generally decrease with depth. However, 
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because of the noisy environment, the values of r2 are quite lower than those at Nodena 

site and generally in the range of 0.60 to 0.85. 
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Figure 2.14  Shear wave signals in frequency domain from a SCPTu sounding performed 
at the Coca-Cola site, Atlanta, GA: (a) Shear wave signal in frequency domain at depth = 

4.92 m; (b) Shear wave signal in frequency domain at depth = 5.95 m. 
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(c) 

Figure 2.15  Phase-shifting of shear wave signals collected at depth of 4.92m and 5.95m 
by an SCPTu sounding performed at the Coca-Cola site, Atlanta, GA: (a) Phase of the 

frequency domain components for shear wave signal at depth = 4.92 m; (b) Phase of the 
frequency domain components for shear wave signal at depth = 5.95 m; (c) Linear 

dependency between frequency and phase shift of the two waves. 
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                                         (a)                                                           (b)  
 

Figure 2.16  Results generated by the cross-correlation and phase-shift methods  
for the SCPTu sounding performed the Coca-Cola site, Atlanta, GA: (a) Shear wave 

velocity profile; (b) Coefficient of determination with depth. 
 

2.5  Software to Process Shear Wave Signals -- ShearPro 

From the two examples shown in last section, as well as other case studies performed by 

the author, it is noticed that consistent results are generally obtained for the shear wave 

velocities (Vs) based on both methods. However, the phase-shift method requires a 

degree of subjective judgment on the frequency range chosen for analysis, which adds 
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time to the processing as well as uncertainty. Compared with the phase-shift method, the 

cross-correlation method seems to be free of these disadvantages, and is therefore 

recommended for use in engineering practice to derive Vs from shear wave signals 

recorded in downhole seismic tests. 

 

A stand-alone software program (ShearPro) is developed to process shear wave signals 

collected by downhole testing, using the cross-correlation method. It is written with 

Visual C++ 6.0, and runs in operating systems such as Windows 98/2000/XP. Cross-

correlation in fact can be performed using Excel spreadsheets, or other commercial 

software (e.g. Matlab). However, with Excel, data at 1 m intervals from a 30 m DHT 

takes about 1 hour for post processing. In contrast, the same data can be handled Matlab 

in about 30 seconds. However, Matlab requires a sizable purchase (around US $900). 

Herein, ShearPro has been made available as a compiled stand-alone software program 

which costs only 1 minute to utilize. 

 

ShearPro loads the raw shear wave data files selected by the user, and plots the shear 

wave trains on the computer screen.  As an example, ShearPro is used to analyze the 

shear wave signals collected by a SCPTu sounding performed at the National 

Geotechnical Experimentation Site (NGES) in Opelika, Alabama. During this sounding, 

both left strikes and right strikes were applied to the seismic source. As a result, two sets 

of shear wave signals were recorded, as shown in Figure 2.17 (a) and (b). These are the 

screen shots after the shear wave data were input into ShearPro.  
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Figure 2.17  Shear wave trains collected at the National Geotechnical Experimentation 

Site (NGES) at Opelika, Alabama: (a) Left strike on the seismic source;  
(b) Right strike on the seismic source. 
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Figure 2.18  Shear wave velocities computed by ShearPro using cross-correlation 

method on the shear wave trains collected at the National Geotechnical Experimentation 
Site (NGES) at Opelika, Alabama: (a) Computed shear wave velocity for both left strike 

and right strike; (b) Coefficient of determination for both left strike and right strike. 
 

In traditional DHT by SCPTu, both sets of left- and right- strikes are needed to obtain the 

Vs profile. The corresponding Vs and r2 computed by ShearPro for the two sets of shear 

wave signals are presented in Figure 2.18 (a) and (b), respectively. As can be seen from 

this figure, the Vs and r2 derived from shear wave signals generated by left and right 

strikes are quite consistent. Similar results are also observed at some other sites, 

indicating that using the cross-correlation method, only one set of shear wave trains 

(generated by either left or right strikes) are necessary. Thus, half the field effort in 
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collecting shear wave signals can be expended, compared with the routine cross-over 

method. 
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Figure 2.19  Shear wave trains collected at Mobile Infirmary Medical Center, Alabama 
by seismic cone penetration test (data from Southern Earth Science, Inc., Alabama) 
Note: Marks on the depth axis represents the depth at which the corresponding shear 

wave signals are recorded. 
 

As another example, Figure 2.19 presents the shear wave trains from the Mobile 

Infirmary Medical Center, Alabama. After cross-correlation is applied to these signals, 

ShearPro displays the derived Vs and coefficient of determination (r2) as shown in Figure 

2.20 (a) and (b), respectively. A window technique is implemented in this software in 

order to limit the amount of wave forms that are matched. The shear wave signals can be 

trimmed by moving the window bars using a computer mouse, and only the part that 

remains between the window bars is used to derive time interval for the shear wave. The 

trimmed shear wave signals from the same site are shown in Figure 2.21. Similarly, 
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cross-correlation can be applied to the trimmed signals, and the Vs profile and coeeficient 

of determination (r2) derived from the trimmed signals are presented in Figure 2.22 (a). 

The values of Vs and r2 derived both with window and without window are compared in 

Figure 2.23. Some differences are observed between the shear wave velocities derived 

with and without window technique. The value of r2 with window technique is 

consistently higher than that without window, indicating a higher degree of correlation if 

the window technique is used. 
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   (a)      (b) 

 
Figure 2.20  Shear wave velocities computed by ShearPro using cross-correlation 

method on the shear wave trains collected at Mobile Infirmary Medical Center, Alabama: 
(a) Computed shear wave velocity; (b) Coefficient of determination. 

 

Two individuals (Scott and Danny) from Southern Earth Sciences Inc. derived Vs 

velocities from these signals using the first arrival method. Using the same data set, the 

Vs velocities were also derived independently using a Matlab program (Zavala & Mayne, 
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2002), that can align the wave trains on computer and get the time shift between waves. 

The shear wave velocities derived by different methods and different people are shown in 

Figure 2.24. It can be seen that they agree well, but much effort has been saved by using 

the program ShearPro. 
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Figure 2.21  Trimmed shear wave trains collected at Mobile Infirmary Medical Center, 
Alabama by ShearPro using window technique proposed  

by Campanella & Stewart (1992)  
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    (a)         (b)   

Figure 2.22  Shear wave velocities computed by ShearPro using cross-correlation 
method and windowing of wave trains collected at Mobile Infirmary Medical Center, 

Alabama: (a) Computed shear wave velocity; (b) Coefficient of determination. 
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Figure 2.23  Comparison of computed results by ShearPro using cross-correlation 

method with and without the window technique based on the shear wave trains collected 
at Mobile Infirmary Medical Center, Alabama: (a) Shear wave velocities; 

 (b) Coefficient of determination. 
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Figure 2.24  Comparison of the shear wave velocities derived by different methods for a 

set of shear wave trains collected by seismic cone penetration test at Mobile Infirmary 
Medical Center, Alabama 

 

ShearPro can also output the phase and amplitude information of the frequency 

components based on Fast Fourier transform of the signals. These can be further analyzed 

by the user if the phase-shift method is desired.  

 

2.6  Summary 

The traditional methods used in engineering practice to derive Vs profiles from shear 

wave signals from downhole testing are the first arrival method and the cross-over 

method. They are time-consuming both in the field (as both left and right paired strikes 
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are required) and in later post-processing (as tedious visual-manual procedures are 

performed by personnel). Both the cross-correlation method and phase-shift method can 

be implemented on computer, speeding up the process to derive Vs profiles. With the 

phase-shift method, some subjective judgment from the user needs to be executed in 

choosing the frequency range for analysis. With the cross-correlation method, the process 

of deriving Vs from shear wave signals can be fully automated, and the results are found 

to agree well with those derived from other methods. Moreover only single wave sets are 

required (either left or right strikes), therefore reducing field testing times in half. In 

addition to DHT, SCPTu, and SDMT, these procedures for cross-correlation can also be 

easily implemented for seismic wave data from crosshole tests, refraction serveys, and 

other tests. In this thesis, a freely-distributed user-friendly software (ShearPro) is 

developed to process the raw shear wave signals with the cross-correlation method. 

Automated processing time is quick, therefore the entire data collection phase and 

analysis are more expedient. 
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CHAPTER III 
 
 

STRATIGRAPHIC DELINEATION AND SOIL CLASSIFICATION 
BY THREE-DIMENSIONAL CLUSTERING OF CPTU DATA 

 
 

3.1  Outline 

Geostratification and soil classification is a first and very important step in site 

characterization, as it serves as the basis for all subsequent geotechnical analysis and 

calculations. Since the data collected through cone penetration tests (CPT) are functions 

of both soil type and soil behavior, they can be used to define the stratigraphy as well as 

soil classification.  

 

Methods for delineating geostratification from CPT data can be grouped into five 

categories: visual examination, soil behavioral classification charts, variograms, 

probability method, and clustering. Currently the visual method and soil classification 

charts are widely used in engineering practice. With the visual method, the boundaries of 

the soil layers and the soil types are determined through the engineer’s experience. For 

most cases, simple "rules of thumb" are sufficient: sands exhibit atmTq σ30>  

( kPaatm 1001 =σ ) and clays atmTq σ20< .  Also, for sands, the 02 uu ≈ , whereas for intact 

clays 02 uu >> , where 0u  is the hydrostatic porewater pressure. The accuracy of this 

method is largely dependent on his or her knowledge about the properties of different 

soils and local geology. Although significant changes in the soil stratigraphy can be 

picked up by the naked eye, it is usually impossible to detect subtle changes in the 

geostratigraphy. However, such subtle changes sometimes may correspond to drastic 
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changes in soil properties, such as plasticity, strength, sensitivity, and/or 

overconsolidation ratio (Hegazy & Mayne, 2002).  

 

Table 3.1  Soil classification charts found in literature 

(a) Based on tip resistance and sleeve friction 
Data Normalization Scheme Reference 

qc and fs Begemann (1965) 
qc and fs/ qc Sanglerat et al. (1974) 
qc and fs/ qc Schmertmann (1978) 
qc and fs/ qc Douglas and Olsen (1981) 
fs/ qc Vos (1982) 
qc and fs/ qc Robertson and Campanella (1983) 
qc and fs/ qc Erwig (1988) 

n

vo

c
c

q
q

⎟
⎠
⎞⎜

⎝
⎛ ′

=
σ

1

 and 
n

voc

vos

q

f
FR

⎟
⎠
⎞⎜

⎝
⎛ ′

′
=

σ

σ
1

 Olsen and Malone (1988) 

qc1 and fs/ qc Olsen and Mitchell (1995) 
Soil index U=f(x, y), and in-situ state index V=f(x, y) 
 ( ) ( ) 35.3log8870.01539.0 −+= ccs qqfx  

( ) ( ) 37.0log4617.02957.0 −+−= ccs qqfy  

Zhang and Tumay (1999) 

qE = qT – u2 and fs Eslami and Fellenius (1997) 
 

(b) Based on tip resistance and porewater pressure 

( ) vovocq σσ−  and ( ) oob uuu −  Jones et al. (1981) 

( )voTq σ−  and ( )ob uu −  Jones and Rust (1982) 

qT and 
voT

ob

q
uuB
σ−

−
=  Senneset and Janbu (1985) 

qT and B Parez and Fauriel (1988) 
qT and B Senneset et al. (1989) 

( )hq wT γ  and ( )
hq

uuB
wT

ob

γ−
−

=  Chang-hou et al. (1990) 

qT, B and t50 Jian et al. (1992) 
 

(c) Based on tip resistance, sleeve friction, and porewater pressure 
qT, FR = fs/ qT, and B Robertson et al. (1986) 

′
−

=
vo

voTq
Q

σ

σ , B, and 
voT

s

q
f

F
σ−

=  Robertson (1990, 1991) 

Method A: ( )vottn qq σ−=  and B 

Method B: qtn and ⎟
⎠
⎞⎜

⎝
⎛ ′− vosfB σ1  

Larsson and Mulabdic (1991) 

Q(1-B) and F Jefferies and Davies (1993) 
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The reliance on soil classification charts is popular in engineering practice, because it 

allows a simple deterministic evaluation by either manual methods or utilization of 

computer. Table 3.1 provides a listing of several soil classification charts found in 

literature, including the data normalization schemes for their use. They are divided into 

three groups: a) charts based on tip resistance and sleeve friction; b) charts based on tip 

resistance and pore pressure; c) charts based on all three channels of CPT data.  

 

One of the most popular set of charts is the soil behavioral type (SBT) developed at 

University of British Columbia (Robertson et al., 1986; Robertson & Campanella, 1988), 

as shown in Figure 3.1. Here, all three CPTu readings (qT, fs, u2) are employed indirectly 

to assess the type of soil with up to 12 different categories possible. In some cases, two 

different soil types are interpreted since the qT – FR and qT – B can provide independent 

categories. Figure 3.2 shows the soil behavior type classification charts as suggested by 

Robertson (1990, 1991). Here, the three CPTu readings are normalized and used to 

categorize nine different soil behavioral types. The collected CPTu data points are 

compared with the classification charts, and each point is classified as a particular soil 

type. The soil stratigraphy is then generated by grouping the data points, which are close 

to each other in depth and belong to the same or similar soil type. Since CPTu soundings 

provide hundreds or thousands of data points, the number of layers generated through this 

approach is often overwhelming. Similarly with the visual method, the soil classification 

charts cannot detect subtle changes in the soil stratigraphy. In addition to the two most 

commonly-used approaches, there are also statistical methods that use autocorrelation 

and variograms (e.g. Wickremesinghe, 1989; Hegazy et al, 1996, 1997) or probabilistic 
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functions (e.g. Zhang, 1994; Zhang & Tumay, 1999) for geostratification. However, 

neither of these can provide consistent and objective boundaries between soil layers 

(Hegazy, 1998). 
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Figure 3.1  Soil behavior classification chart (after Robertson et al., 1986) 

Note: 
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Cluster analysis in previous geotechnical research (Hegazy & Mayne, 1998, 2002) was 

based on only two channels of CPTu data, that is, qT and u2, in terms of their normalized 

parameters Q and B, respectively. One example is the cluster analysis performed on 

piezocone data obtained in an offshore deposit at the Troll site in the North Sea 

(Amundsen et al. 1985). This site consists of firm silty clay from below the mud line 

down to 45 m. Visual examination of the qT and u2 profiles (Figure 3.3) from a 

representative sounding implies a single uniform clay layer interrupted by an 

Soil Behavior Type (Robertson et al.,1986; Robertson & Campanella, 1988) 
1 – Sensitive fine grained 5 – Clayey silt to silty clay 9 – sand 
2 – Organic material  6 – Sandy silt to silty sand 10 – Gravelly sand to sand 
3 – Clay   7 – Silty sand to sandy silt 11 – Very stiff fine grained* 
4 – Silty clay to clay  8 – Sand to silty sand  12 – Sand to clayey sand* 
       * Overconsolidated or cemented 
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intermediate silty and/or sandy zone between depths of 17 to 20 m. The cluster analysis 

was conducted “blind” as a “Class A” prediction, with no a priori knowledge on the 

details at this site. The resulting clustering delineated two different and separate primary 

layers as shown in Figure 3.3 (f), indicating a major difference in soil types and/or 

properties above 17.3 and below 20m. The strong demarcation by cluster results are 

verified by the water content and plasticity measurements presented in Figure 3.3 (d), 

which show the upper layer is a highly plastic clay underlain by a lean clay. Figure 3.3 

(e) provides additional validation from lab fall cone tests defining the upper clay is 

moderately sensitive (St ≈ 6 to 8) compared with the lower unit which is insensitive (St ≈ 

2).  

F (%) B

Q Q

F (%) B

Q Q

 
 

Figure 3.2  Soil behavior classification chart using three normalized CPTu readings  
(Robertson, 1990, 1991) 

Note: ( ) ′−= vovotqQ σσ ; ( ) ( )votquuB σ−−= 02 ; ( ) %100×−= vots qfF σ  
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           (a)             (b)          (c)         (d)                      (e)             (f) 

 
Figure 3.3  Stratification at Troll, North Sea site based on cluster analysis of two 

channels of data (Hegazy & Mayne, 2002): (a) tip resistance; (b) porewater pressure; (c) 
soil boring information; (d) index parameters; (e) sensitivity; (f) clustering results. 

 

The cluster analysis based on qT and u2 (Hegazy & Mayne, 2002) was previously applied 

to soundings in soil deposits composed predominantly of clay and silty clay sediments 

beneath the groundwater table. If soils are located above the water table, the u2 reading is 

related to many other factors besides the soil type, such as degree of saturation, capillarity 

and filter fluid of the cone penetrometer, and cannot properly reflect the soil behavior 

directly. In fact, in sandy deposits, u2 is close to the static porewater pressure u0, making 

it hardly useful to detect the different facies and/or types of sandy layers. Facciorusso & 

Uzielli (2004) followed the cluster analysis procedure suggested by Hegazy & Mayne 

(2002), but used it on the measurement by mechanical cone, which has only the measured 

tip resistance qc and sleeve friction fs (but no u2 reading), at the harbor area of Gioia 

Tauro, Italy. The result of cluster analysis at this site agrees well with the boring log 

obtained nearby. However, measurements from mechanical cones are not as reliable as 

those from electronic cones, and the measured tip resistance qc can0not be corrected for 
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porewater pressure effects, due to lack of u2 measurement. Ziegler & Prokhorova (2004) 

performed similar cluster analysis based on tip resistance qT and friction ratio FR, but did 

not include porewater pressure u2. 

 

Experience has shown that soil classification can generally be made more reliable using 

all three channels of CPTu data (Robertson, 1990). The three-dimensional cluster 

analysis was developed as an improved procedure for stratigraphic delineation. This 

statistical method can detect the inherent correlation between the CPT data and 

objectively fuse the data sets into discrete layers.  

 

The soil behavioral classification charts shown in Figure 3.1 and 3.2 were intended to 

represent a three-dimensional soil classification system that incorporates all three 

channels of CPT data. However, they consist of two independent charts, and very often 

soils will fall into different zones on each chart and provide inconsistent classification 

results, as will become evident in the following example. A SCPTu (Seismic Cone 

Penetration Test) sounding performed for the new Cooper River bridge in Charleston, 

South Carolina is presented in Figure 3.4. This area lies in the Atlantic Coastal Plain 

sediments. As can be seen from this figure, the soil below depths of 20m appears to be 

more homogeneous than that above 20m, which are a highly variable assortment of 

Holocene age sediments. Below 20m, the penetration porewater pressure u2 is much 

higher than static porewater pressure u0, while that above 20m show u2 is close to u0. The 

soil below 20m is known as Cooper Marl, which is classified as a stiff calcareous marine 

clay or silt (CH/MH) (Camp et al., 2002). Although the calcium carbonate content ranges 
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from about 50% to 80%, this soil is highly plastic with average liquid limit LL ≈ 78, 

average plasticity index ≈ 38, and average water content ωn = 48%. Its fines content 

ranges from about 50% to more than 90%, and the clay fraction (CF) is generally 10% < 

CF < 30%. Figure 3.5 shows the results of soil classification. Based on the qT – FR chart 

of Robertson et al. (1986), the Cooper Marl that is below 20 m is classified as type 8 

(Sand to silty sand) and type 9 (Sand), which are the wrong classification. According to 

the qT – B chart of Robertson et al. (1986), the data points of Cooper Marl are out of the 

suggested range where soil data should fall in. Although the Robertson (1990, 1991) Q ~ 

B chart gives the right classification that most of the soil below 20m is type 3 (clays-clay 

to silty clay), the Q ~ F chart indicates that most of the soil below 20m is type 5 (sand 

mixtures: silty sand to sand silty), which classification is clearly incorrect and contradicts 

that derived from the Q ~ B chart.  

 

In order to provide consistent soil classification results, a three-dimensional chart is 

proposed herein, which incorporates all three channels of CPTu data. With the proposed 

three-dimensional soil classification chart, the soil type can be determined during the 

process of three-dimensional cluster analysis. Both the processes of three-dimensional 

cluster analysis and three-dimensional soil classification can be automated and 

implemented by computer. 
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              (a)         (b) 
 
Soil Behavior Type (Robertson et al.,1986) 
1 – Sensitive fine grained 5 – Clayey silt to silty clay 9 – sand 
2 – Organic material  6 – Sandy silt to silty sand 10 – Gravelly sand to sand 
3 – Clay   7 – Silty sand to sandy silt 11 – Very stiff fine grained 
4 – Silty clay to clay  8 – Sand to silty sand  12 – Sand to clayey sand 
       * 0 – Data out of boundary 
Soil Behavior Type (Robertson, 1990) 
1 – Sensitive, fine grained 5 – Sand mixtures  9 – Very stiff fine grained 
2 – Organic soils-peats  6 – Sands   
3 – Clays-clay to silty clay 7 – Gravelly sand to sand  
4 – Silt mixtures   8 – Very stiff sand to clayey sand  
       * 0 – Data out of boundary 

 
Figure 3.5  Soil classification results based on the representative SCPTu data from the 
Cooper River Bridge site in Charleston, SC: (a) Based on the Robertson et al. (1986) 

charts; (b) Based on the Robertson (1990) charts. 
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3.2  Cluster Analysis 

Clustering is a numerical statistics method to uncover or discover groups or clusters of 

homogeneous observations in large data sets (Everitt et. al, 2001). The members of each 

cluster are similar to each other, but not related to the members in other clusters. Cluster 

analysis is a very useful tool for classification of a large number of objects or individuals, 

each of which has a certain number of properties that can be described mathematically. It 

may reveal the inherent associations in data, which are not previously evident. This 

method has been applied to sorting and distributions within various fields, such as 

biology, medicine, and social science. Most recently, it has been applied to internet 

search engines (e.g. Google, Excite) to find like files or websites of common 

denomination. 

 

Given a sample of n objects that should be divided into a certain number (Nc) of groups, 

Romesburg (1984) summarized the steps of cluster analysis: 

 

Step 1. Determine the significant variables that can measure the properties of each of the  objects.  

Step 2. Since raw data may be recorded at different scales, which can inevitably result in  data 

that have quite different ranges, normalization and standardization should be used to 

remove the scale effects.  

Step 3. A similarity matrix can be formed, which indicates how closely the objects resemble each 

other numerically. The similarity is usually represented by the distance between objects, 

which can be mathematically defined in many ways. (Everitt et. al, 2001).  

Step 4. Data are divided into correlated groups by clustering techniques. (Everitt et al., 2001).  
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The underlying mathematics of cluster analysis is relatively simple, but extensive 

computation is required due to the large number of data. Since the similarity between 

objects can be measured in a number of ways, the produced classification is dependent 

upon the particular technique used.  

 

A standard electronic CPT sounding provides data about the tip resistance qT, the 

porewater pressure u2, and the sleeve friction fs of the soil at different depths. All these 

data records represent complex properties of the soil and are a function of the respective 

soil types, as well as other facets. Therefore, cluster analysis can be used to classify the 

soils based on CPT data. It can detect the inherent similarity between the data sets and 

assist in a rational grouping of the data to define soil layers and types.  

 

3.3  Three-Channel Cluster Analysis 

3.3.1  Selection of Variables 

Cluster analysis of CPT data in clays suggested by Hegazy & Mayne (1998, 2002) was 

based on only two readings qT and u2, while clustering of sands was done from qc and fs 

data (Facciorusso & Uzielli, 2004). Based on early comparative studies using analog CPT 

systems with now-antiquated data acquisition and internal electronics (e.g. Lunne et al. 

1986). The sleeve friction resistance (fs) was excluded from Hegazy & Mayne (2002) 

analysis for the reason that fs measured by CPT was not as repeatable as qT and u2. This 

was partially due to differences in manufacturer design, e.g. subtraction cone vs. 

compression penetrometer (Lunne et al., 1986), as well as use of thermally correcting 
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load cells, type of metal used for penetrometer, wear, and surface roughness (e.g. DeJong 

and Frost, 2001).  
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Figure 3.6  Summary of 22 CPTu soundings obtained at the NGES site in Opelika, AL 

 

Today, it is now found that most modern commercial cone penetrometer systems obtain 

reliable and comparable sleeve friction readings. For example, a total of 22 CPT 

soundings were performed at the National Geotechnical Experimentation Site (NGES) 

located in Opelika, Alabama (e.g. Finke et al., 2001). They were performed with 

commercial cone penetrometers that are of different sizes and manufactured by different 

companies such as Hogentogler, van den Berg, Fugro, and Vertek. Figure 3.6 shows the 

mean and standard deviation of each of the three channels of data collected by these 

soundings, as well as their coefficients of deviation. Within the top 10 m, it can be seen 

that the standard deviations for all three channels of data are not very large, indicating 

they are relatively repeatable at the same depth. In fact, the coefficient of variation for the 

sleeve friction fs is generally lower than those of the tip resistance qT and porewater 

pressure u2. Therefore, the measurement of the sleeve friction fs should be at least as 

reliable as qT and u2. Also of note at this NGES is that a special residual kaolin layer or 
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zone is formed at varying 10 to 15 m depths and of varying thickness, generally between 

1 m to 5 m (Finke, 1998). The zone is not uniform and appears quite variable, thus 

affecting the porewater pressure readings.  

 

Since cluster analysis is performed on a single sounding, it does not require the 

measurements to be repeatable at the same depth for different cones. As long as the 

measurements are repeatable for the same cone and they are a function of the specific soil 

types, they can be included in cluster analysis to delineate the soil stratigraphy.  

 

The friction ratio (FR) is the ratio of sleeve friction fs to the tip resistance qT. In sand, FR 

is usually lower than that in clay, and sands of different fines content exhibit different 

FR. Therefore, the sleeve friction fs can indicate the difference between clay and sand, as 

well as between different types of sand, and it is reasonable to include a third channel, fs, 

in the cluster analysis for CPT data. The inclusion of the fs channel not only removes the 

constraints of the two-channel approach in classifying sandy deposits, but also mitigates 

the problem of u2 readings above the groundwater table as mentioned before. In 

particular, u2 ≈ 0 in dry soils, and u2 is variable in partially saturated soils, but depends on 

capillarity, saturation, and filter fluid. Though qT and u2 play an important role in 

distinguishing different types of clayey soils, qT and fs give more information about sandy 

soils. Because of the inclusion of fs, the cluster analysis can be based on all three 

channels of CPT data, or any two channels of them. However, experience has shown that 

more reliable results can be derived if all three channels of CPT measurements (qT, fs, 

and u2) can be used (Robertson, 1990). 
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3.3.2  Normalization of Variables 

The cone tip resistance qT, porewater pressure u2, and sleeve friction fs measured by CPT 

soundings can be significantly influenced by the effective confining stress level. Wroth 

(1984) and Houlsby (1988) suggested normalizing the CPT data with respect to the 

effective overburden stress in the following format:  

( ) ′−= vovotqQ σσ       (3-1) 

( ) ( )votquuB σ−−= 02      (3-2) 

( ) %100×−= vots qfF σ      (3-3) 

where voσ  is the total overburden stress and ′
voσ  is the effective overburden stress.  

 

Jefferies & Davies (1991) realized the importance to include all three channels of CPT 

data in a single chart for soil classification purpose, and proposed to plot the expression 

Q(1-B) versus F for soil classification purpose (Figure 3.5). In this case, the term Q(1-B) 

relates to the normalized effective cone resistance, or 1)1( 2 −′
−

=−
vo

T uqBQ
σ

. The 

boundaries between the six soil type zones can be approximated as concentric circles, 

with the center as shown in Figure 3.7. The fines content of the soil types increases with 

the radius of its boundary circles. 

 

Realizing that the confining stress influences the CPT data differently in different soils, 

Olsen & Mitchell (1995) suggested normalizing the tip resistance in the following format: 
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%100×= Ts qfFR       (3-5) 

where c is a stress exponent that varies with soil type. For clean sands, c ≈ 0.5 to 0.6 

while for clays, c ≈ 1. However, this normalization scheme does not consider the 

porewater pressure readings u2.  
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Figure 3.7  Soil Behavior type classification chart (Jefferies & Davies, 1991) 
 

The normalized forms recommended by Wroth (1984) and Houlsby (1988) [equations (3-

1) to (3-3)] are used in the soil classification charts proposed by Robertson (1990, 1991). 

Also, Hegazy & Mayne (1998, 2002) used Q and B in their two-channel cluster analysis. 

Herein, Q, F, and B are utilized as the three channels of normalized data for conducting 
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cluster analysis, thus allowing consistency with prior approaches. An example of the 

derived value of Q, F, and B has been presented in Figure 3.4 for the representative 

sounding performed at the Cooper River Bridge site in Charleston, SC. The clustering 

methodology shown herein can be easily adapted to other normalization schemes, if 

desired. 

 

3.3.3  Standardization of Data 

Because the mean and standard deviation of parameters used in cluster analysis can be 

correlated with their relative influence on the result, it is essential to standardize the 

parameters for cluster analysis. From the set of soil classification charts shown in Figure 

3.2, it can be seen that Q varies in the range from 1 to 1000, F in the range from 0.1% to 

10%, B in the range from -0.6 to 1.4. Since these parameters vary over dramatically 

different ranges, the corresponding means and standard deviations could also be very 

different in naturally deposited soils.  

 

Hegazy & Mayne (1998, 2002) recommend the “Zscore” procedure to standardize the 

data. Suppose jX  is a cone variable and ijx  is the measurement of jX  at a certain depth 

indexed by i , the following equation gives the statistical definition of the standardized 

value of ijx : 

   
)(
)(

)(
j

jij
ij XStdev

XEx
xZscore

−
=      (3-6) 

where )( jXE  is the average of all jX  measurements, )( jXStdev  is the standard 

deviation of all jX  measurements. Figure 3.8 shows the qT and u2 measurements of a 

62



sounding performed at Amherst, Massachusetts, as well as the derived normalized 

parameters (Q and B). A visual examination of the data indicates that the soil stratigraphy 

consists of a deep clay deposit underlying a 4-m thick layer of sandy silt and silty clay.  

The standardized values of Q and B using Zscore procedure are also shown in Figure 3.8.  

 

B BB B

 
 

Figure 3.8  CPTu data, normalized parameters, and derived Zscore value for a sounding 
performed at Amherst, Mass. Site (Hegazy & Mayne, 2002) 

 

The standardized CPTu data can form a vector ( ) ( )( )ii BzscoreQzscore ,  for a certain 

depth (i), and it can be put in a matrix form as follows:  

( ) ( )
( ) ( )

( ) ( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nn BZscoreQZscore

BZscoreQZscore
BZscoreQZscore

D
MM

22

11

    (3-7) 

With the inclusion of the normalized friction ratio F  in cluster analysis, a vector 

( ) ( ) ( )[ ]iii FZscoreBZscoreQZscore ,,  can be formed for a certain depth (i), and the CPT 

data standardized with the “Zscore” procedure can be looked at in the following way:  
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  (3-8) 

 

Standardizing the data using the “Zscore” procedure is statistically viable, but the 

physical meaning of the parameters in geotechnical engineering generated by the 

“Zscore” procedure is not clear. Furthermore, equipment errors, such as electric noise, 

might exist in the collected data. If any of the standardized cone data (Q, B, or F) varies 

in a very small range, resulting in a small standard deviation, the “Zscore” procedure 

tends to over amplify the range of the variation. The random errors might thereby be 

amplified to the extent to affect the analysis results adversely. 

 

In the soil classification charts suggested by Robertson (1990, 1991), the normalized tip 

resistance (Q) and friction ratio (F) are presented in logarithmic scale, while the 

normalized porewater pressure (B) is in arithmetic scale. In this thesis, the normalized 

CPT data are therefore standardized using the scales consistent with those in the soil 

classification charts.  

    QQS 10log)( =      (3-9) 

    ( ) FFS 10log=      (3-10) 

    ( ) BBS =       (3-11) 

Where S(X) represents the standardized form of the variable X. The CPT data 

standardized in this way can be looked at in the following way:  
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The reason for adopting such a standardization scheme will be further explained in the 

following section.  

 

3.3.4  Similarity Matrix 

Hegazy & Mayne (1998, 2002) used the “cosine” procedure to measure the cosine of the 

angle between the two vectors formed by the standardized data, as shown in Figure 3.9. 

The similarity between two sets of standardized data (e.g., ( ) ( )[ ]ii BZscoreQZscore ,  and 

( ) ( )[ ]jj BZscoreQZscore , ) at different depths is measured by the cosine of the angle 

between the two vectors in a two dimensional space, which can be calculated using the 

following equation: 
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∑
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where n  is the number of variables participating in the cluster analysis. And the 

similarity matrix is of the following form: 
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  (3-14) 
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Figure 3.9  The “cosine” procedure measures the cosine of the angle between two 

vectors formed by the standardized data (Hegazy & Mayne, 2002) 
 

The “cosine” procedure groups data sets that have small angles between their 

corresponding vectors, but they do not necessarily belong to the same soil type, because 

the soil type is also related to the length of the vectors. 

 

By using the soil classification charts, it is assumed that soils at different depths belong to 

the same soil type, if their associated CPT data points are located on the same spot in the 

charts. The closer the CPT data points are located to each other in the charts, the more 

similar the associated soils behave. Therefore, the geometric distance (Euclidean 

distance) can be used to measure the similarity between the CPT data points. The 

Euclidean distance between the data points is inversely proportional to the similarity of 

the associated soils. 

 

Since the soil type is a function of all three channels of data (Q, F, and B), a three-

dimensional space can be created with the three axes representing the three channels of 

data respectively, as shown in Figure 3.10. As mentioned above, the normalized tip 
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resistance and friction are in log scale, while the normalized pore water pressure is in 

arithmetic scale. The CPT data standardized in the form of equation (3-9) to (3-11) 

represent the geometric coordinates of the CPT data points in the three dimensional 

space. The Euclidean distance L of two data sets, [S(Qi), S(Fi), S(Bi)] and [S(Qj), S(Fj), 

S(Bj)], can be computed as following (Figure 3.10):  

  ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]222
jijijiij BSBSFSFSQSQSL −+−+−=   (3-15) 

For a CPTu sounding consisting of n sets of data from different depths, an n*n 

resemblance matrix can be formed with Lij in the entry located on the ith row and jth 

column.  

 
Figure 3.10  Measuring the similarity between data sets using the Euclidean distance Lij 

between the corresponding CPTu data (Q, B, F) points in three dimensional space 
 

3.3.5  Choice of Clustering Technique 

Hegazy & Mayne (1998, 2002) recommended the use of the single-link (nearest 

neighbor) hierarchical method for the cluster analysis of the CPT data. One similarity 

matrix, which stores the distance between the data sets at different depths, is computed at 

the beginning of the cluster analysis. From this single similarity matrix, two individual 

B
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data sets are found that are closest at each step. If these two individual data sets are from 

two separate groups of individuals, the two groups are fused together to form one group. 

The culminating stage is where all the data sets are in one group. Basically, the criterion 

to find the two closest groups of individuals is that one individual in one group and 

another individual in the other group are the closest in the current stage. Because this 

algorithm uses the distance between the individuals from two different groups to 

represent the distance between the two groups, it can sometimes fuse very different 

individuals together, while leaving similar individuals separate. 

 

In order to avoid this situation, whenever two groups of data sets are fused together, the 

coordinates of the centroid of all the data in these two groups can be computed to 

represent the newly formed group. Then a new resemblance matrix is formed, where the 

coordinates of the centroid of the newly formed group is used to compute the distance 

from it to other groups. Based on this new resemblance matrix, the cluster analysis is 

further performed to fuse two of the closest groups at this stage. In this algorithm, two 

groups of individuals are fused together only if their centroids are closest, which 

effectively eliminate the possibility that very different individuals can be grouped 

together. Figure 3.11 illustrates the steps in this algorithm. Suppose 5 data points exist in 

the three-dimensional space (Q, F, B), as shown in Figure 3.11 (a), and the distance 

between data points 1 and 2 is the shortest among all of them [Figure 3.11 (b)]. Therefore 

data points 1 and 2 are grouped together, as shown in Figure 3.11 (c). The distances are 

measured again among data points 3, 4, 5, and the centroid of the group consisting data 

points 1 and 2. At this stage, the distance between data points 3 and 4 is the shortest 
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[Figure 3.11 (c)], and they are grouped together as shown in Figure 3.11 (d). Similarly, 

this procedure continues in Figure 3.11 (e) and (f), and at the end all the data points are 

grouped into one group.  

 
 (a) (b) 

 
 (c)       (d) 

 
 (e)  (f)  
Figure 3.11  Data points grouped together by three-dimensional cluster analysis step by 
step: (a) Data points in three dimensional space; (b) Data points 1 and 2 have the shortest 

distance; (c) Data points 1 and 2 grouped together; (d) Data point 3 and 4 grouped 
together; (e) Data points 1, 2, and 5 grouped together; (f) Data points 1, 2, 3, 4, and 5 

grouped together. 
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3.3.6  Determining the Number of Clusters 

A difficulty that exists in all clustering techniques is the final total number of clusters that 

the data should be fused into (Everitt, 2001). The decision is subjective in the sense that it 

is the trade off between the desire for detail, which requires a large number of clusters, 

and the desire for generality and simplicity, which requires a smaller one (Romesburg, 

1984). In the extreme case, each row of CPT data can represent one layer, but in 

engineering practice it is usually overwhelming to keep track of so many layers. And 

very often what we want is just some general understanding of the soil profile without 

considering the outlier data, because their contribution to the overall behavior of the soil 

deposit is limited and usually can be ignored. Based on 25 studied cases of CPTu records 

with up to 100 assumed clusters, Hegazy & Mayne (1998, 2002) found that the actual 

number of soil layers can often be accurately represented with the total number of 

clusters less than 15 and often less than 8.  

 

In the cluster method proposed in this paper, the data points that are grouped together fall 

in a shape close to a globe in the three-dimensional space. The less the radius of the 

sphere for a group of data points, the more uniform soil properties this group has. 

Therefore, by limiting the maximum radius, the uniformity of the soils in each group can 

be controlled. At the beginning of the cluster process, each data point is one cluster and 

the largest radius is 0. As cluster analysis proceeds, the data points are fused together step 

by step, and the largest radius of all the groups of data increases. Therefore, the user can 

specify the maximum radius for the data groups, and let the cluster process continue until 
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the largest radius exceeds the specified maximum radius. The number of clusters at this 

stage is the cluster number corresponding to the specified maximum radius. 

 

3.3.7  Interpretation of Cluster Results 

The cluster analysis groups the most similar data together at an early stage corresponding 

to a large number of clusters, while relatively dissimilar data are grouped at late stages 

corresponding to a small number of clusters. With a larger number of clusters, more 

detailed features in the vertical profile can be detected. Depending on the definition of the 

features, they can be interpreted as soil layers, sublayers, seams, lenses, stringers, 

anomalies, or transition zones between different layers (Hegazy & Mayne, 2002). 

 

It is almost inevitable that some outlier data would exist in the collected CPTu data. 

Some of them are caused by inaccuracies of the testing equipment or testing procedures 

errors, such as electrical noise, rod changes, porewater pressure dissipation, as well as 

random events, such as encountering a stone in the soil matrix or a cemented layer or cap 

rock. The outlier data caused by these errors can sometimes be recognized through 

detailed analysis of the testing equipment and testing procedure. However, some outlier 

data may be the real representation of the soil behavior, and reflect the irregular structure 

in the soil deposits such as seams, lenses, voids, intrusions, or random events. They are 

sometimes paramount to certain types of forensic studies. For example, they may indicate 

the critical surface for slope failure. Since the outliers are so deviant, they have large 

distances from their neighbor data points, and consequently they remain as independent 
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layers until the very late stages of cluster analysis. For this reason, cluster analysis can be 

very useful in detecting the outlier data.  

 

A reasonable definition is needed for the minimum thickness to qualify as a soil layer 

during cluster analysis. The minimum thickness suggested by Vivatrat (1978) is that it 

should contain at least 20 points of CPT data, usually between 0.5 and 1 meter for most 

commercial cone penetrometers (Hegazy & Mayne, 1998). Wickremesinghe (1989) and 

Zhang (1994) suggested a minimum layer thickness of 0.5m and 0.75m respectively. 

Using clustering of Q and B in clays, Hegazy & Mayne (1998) chose 0.5m for the 

minimum layer thickness in their analysis. The author believes that the definition of the 

minimum thickness depends on the purpose of the analysis. If very thin layers play a 

significant role in the result, the minimum thickness of the layer should be defined small. 

Otherwise, it can be defined larger. The thickness of the layers changes with the number 

of clusters. The user can find the appropriate thickness for the layers by varying the 

number of clusters to suit the needs of the site investigation. 

 

3.4  Application of Three-Dimensional Cluster Analysis 

The clustering of piezocone data (Q, F, B) will be presented for selected sites to define 

the vertical layering. Results will be compared with available soil boring, sampling and 

lab test information. For illustration, separate examples are shown for CPTu data in clay, 

silt, and sand profiles. 
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3.4.1  Cluster Analysis for the Ariake Clay Site in Japan 

The Ariake site, which is located at Hizen-Kashima, Saga Prefecture, on Kyunshu Island, 

Japan, has long been used as a field test site to study soft clay by the Port and Harbour 

Research Institute (PHRI) of Japan (Tanaka et al., 2001). Figure 3.12 shows the results of 

a representative CPTu sounding performed at this clay site, including both the raw 

reading (qT, fs, u2), the processed friction ratio FR = fs/qT, and the normalized parameters 

Q, F, and B. From this figure, it can be seen that the porewater pressure u2 is two to three 

times higher than the static pore pressure, indicating the existence of a clayey soil type. In 

the Ariake clay, all the three channels of data (qT, fs, and u2) increase steadily with depth. 

The sleeve friction FR = fs/qT remains almost constant through the whole soil profile. 

Small spikes can be seen in the CPTu data at regular depth intervals of about 1 m, 

indicating the locations where successive rods were added when the sounding was 

performed (This is a systematic procedural error in data collection). Overall, no apparent 

change of soil properties can be observed in the vertical soil profile. That is, a visual 

examination of the profiles reveals no obvious sub-layering at the site with the clay from 

2 to 18 m. 

 

Using the procedure specified previously, cluster analysis is performed for this CPTu 

sounding. The results of the cluster analyses corresponding to the cluster number of Nc = 

9 is shown in Figure 3.13 (a) and that for Nc = 20 is shown in Figure 3.13 (b). They are 

presented in two formats: the first format is the soil profile with the different clusters 

representing different soil types, and the second format includes the CPTu data points 

plotted in the suggested three dimensional space as numbers corresponding to the cluster 
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in which it belongs. At an assumed Nc = 9, most of the data points in the sounding remain 

in the same cluster, which is cluster 9. The points in clusters 1 to 8 are mostly outlier data 

corresponding to the procedure errors resulted from change of rods. As Nc increases to 

20, the cluster analysis shows two major clusters, cluster 18 and cluster 20. Most of the 

data points in cluster 18 and cluster 20 correspond to soil above 4.5m and below 4.5m, 

respectively. Thus, clustering indicates two significant layers in the soil profile with the 

boundary at a depth of around 4.5m.  

 

Figure 3.14 shows the grain composition versus depth, side by side with the soil 

stratigraphy delineated by cluster analysis with Nc = 20 and 45. The clay content above 

the depth of 18m is around 40% to 50%, and it sharply increases below 18m. The sand 

content is relatively high and over 10% in the upper 6m, but for most of the depth 

between 6m to 18m, the sand content is less than 1%. Below a depth of 18m, the sand 

content increases significantly to above 40%. From the grain size distribution, the deposit 

can be divided into three layers: the top 6m is the first layer which has relatively high 

sand content, the second layer lies between depths of 6m and 18m and it has essentially 

all fines (particles < 75 μm) low sand content, and below 18m is the third layer which has 

high sand content. It can be seen that the soil stratigraphy with Nc = 20 separated out the 

first layer at the depth boundary of about 4.5m, and early stages of a third layer > 18 m 

deep. With Nc = 45, further clustering separated out the third layer more clearly. 

Considering that some inherent horizontal variability exists at the site, the soil 

stratification given by cluster analysis agrees quite well with that derived from the grain 

composition.  
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The CPT data in this sounding contain information about the soil properties at different 

depths, as well as the procedural and measurement errors, yet they are not visually 

obvious from the data profiles presented in Figure 3.12. Cluster analysis groups similar 

data points and separates out the measurement errors, irregularities, and transitional 

layers as small clusters. Therefore, data points of the major layers remain in the same 

clusters even as the number of clusters Nc goes quite high. Through the process of cluster 

analysis, both the general and detailed stratification information can be obtained. A two-

dimensional clustering proposed by Hegazy & Mayne (2002) for processing CPTu data 

has now been extended herein to three channels. 
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(a)  

    
(b)  

Figure 3.13  Soil stratigraphy delineated by cluster analysis for a representative CPT 
sounding performed at the Ariake clay site in Japan: (a) Nc = 9; (b) Nc = 20.
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3.4.2  Cluster Analysis for Opelika National Geotechnical Experimentation Site 

(NGES), AL 

Extensive in-situ and laboratory tests have been carried out for the NGES site located in 

Opelika, Alabama, which is located within the Piedmont Geologic Province (Mayne et 

al., 2000; Mayne & Brown, 2003). Figure 3.15 shows the results of a representative 

CPTu sounding performed at this site, as well as their corresponding normalized 

parameters. The tip resistance qT is about 2 MPa through most of the depth, except in the 

depth range from 4 to 6 m, where qT increases up to 8 MPa. The sleeve friction fs does 

not change significant with depth, and is in the range from 100 to 200 kPa. Below the 

depth of 8.5 m is the special residual kaolin layer or zone, as discussed previously. This 

zone is not uniform, and the porewater pressure readings vary dramatically with depth.   

 

Results of cluster analysis for the representative CPTu sounding at this site are shown in 

Figure 3.16. At Nc = 2, there are two major clusters (cluster 1 and cluster 2) in the soil 

profile, and they are separated at the boundary of about 2.2 m in depth. The data points 

that belong to the two clusters are highlighted in the suggested three-dimensional space, 

and it can be seen that data points in cluster 1 have a higher value of Q than those in 

cluster 2. Cluster 2 is further separated into two clusters as Nc increases to 6, which are 

cluster 5 and cluster 6 as shown in Figure 3.16 (b).  

 

In Figure 3.17, the stratigraphy given by cluster analysis with Nc = 6 is compared with 

the results of other in-situ and lab tests. Figure 3.17 (a) shows the mean blow counts N60 
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from 7 SPT tests performed at this site. According to the relationship between mean grain 

size, D50, and the ratio between CPT tip resistance qT and SPT blow counts N60 suggested 

by Kulhawy & Mayne (1990), the mean grain size D50 can be inferred from the ratio of 

qT and N60. The ratio qT/N60 is plotted in Figure 3.17 (b), and the inferred value of D50 is 

presented in Figure 3.17 (c). Lab index tests have been performed on two different sets of 

soil samples obtained at this site, and the D50 values derived from these lab tests are also 

presented in Figure 3.17 (c). From this figure, it can be seen that the inferred D50 values 

and those obtained from lab tests agree well in the top 11m. Due to inherent variability, 

the D50 values derived from lab tests varies significantly at depths of 12m to 15m, but 

their average agrees well with the inferred D50. The observed agreement helps to validate 

the inferred D50. In the top 2m to 3m of the soil profile, D50 is low and it is around 

0.01mm, indicating fine-grained soil. From depths of 3m to 11m, the soil has a D50 of 

about 0.1mm, indicating granular soil (i.e., fine sand). The value of D50 drops to the range 

of 0.03mm to 0.04mm between the depths of 12m and 15m, indicating fine-grained soil. 

Figure 3.17 (d) and (e) show the weight percentage of grains passing #200 sieve and the 

clay fraction derived from lab tests. It is evident that fine grains constitute a larger portion 

in the soil at the top 2m to 3m than that below it. Based on the grain size distributions, the 

soil profile for this site can be generated using the Unified Soil Classification System 

(USCS), and it is shown in Figure 3.17 (f). It agrees well with the soil stratigraphy breaks 

at depths around 2.2 m and 10.3 m given by cluster analysis with Nc = 6 as shown in 

Figure 3.17 (g). 
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 (a)  

 
(b)  

Figure 3.16  Soil stratigraphy delineated by three-dimensional cluster analysis for the 
representative CPTu soundings performed at the Opelika NGES site:  

(a) Nc = 2; (b) Nc = 6.
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The Ariake site, Japan in last case study is a clay site, while the NGES site in Opelika, 

AL is a silt site. In both cases, the results of cluster analysis are confirmed by grain size 

distribution of the soil. Finally, results for a sand site will be considered. 

 

3.4.3  Cluster Analysis for the Holmen Sand Site at Drammen, Norway 

The Holmen site, which is located on Holmen Island in the Drammenford, Norway, has 

been the main sand research site of Norwegian Geotechnical Institute (NGI). Various in-

situ tests have been performed, and many laboratory tests have been carried out on soil 

samples recovered from boreholes drilled at this site (Lunne et al., 2003). Figure 3.18 

shows the results of a typical CPT sounding performed at this site. It can be seen that the 

tip resistance qT and the sleeve friction fs both have relatively high values in the top 2.5m 

in depth, indicating a layer of sand to gravelly sand. Below 2.5m, qT and fs increases 

steadily with depth, friction ratio FR is nearly constant at about 0.5%, and u2 is close the 

hydrostatic porewater pressure u0. Visually, the soil below 2.5m is a uniform sand 

deposit. The normalize Q, F, and B are also presented in Figure 3.18 for the Holmen sand 

site. 

 

Figure 3.19 shows the results of cluster analysis for adopted cluster numbers of Nc = 5 

and 9. At Nc = 5, all the data points corresponding to soil below 2.5m belong to the same 

cluster (cluster 5). This cluster is separated into two major clusters (cluster 8 and 9) as Nc 

increases to 9. Cluster 8 is in the depth range from about 4m to 20m, and cluster 9 
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consists of two major segments, with one from the depth range of 2.5m to 4m and the 

other from 20m to 24m. 

 

Based on the material index of the soil samples from this site, Lunne et al. (2003) 

interpret the soil profile as shown in Figure 3.20 (a). The top 2m is a man-made fill of 

sand and coarser material (gravel, stones), and below it exists a sandy complex. The 

sandy unit consists of medium to coarse grained sand down to 20m, and fine to medium 

silty sand below 20m. Figure 3.20 (b) shows the soil unit weight measured by an 

electrical resistivity probe (ERT) at this site. It can be seen that the unit weight is about 

19.0 kN/m3 down to depths of 18m, and it increases to about 20 kN/m3 below 20m. 

Figure 3.20 (c) presents the profile of average overconsolidation ratio (OCR) derived 

from 6 Marchetti dilatometer tests. The OCR is about 1.0 in the depth range from 5m to 

15m, and its value increases sharply to about 3.5 to 4.0 below depths of 18m. Based on 

the stress history from the dilatometer test, Lunne et al. (2003) divide the deposits into 

four regions as shown in Figure 3.20 (d). The top 2m is gravelly sand fill, from 2m to 5m 

is overconsolidated sand, from 5 to 20m is normally to lightly overconsolidated medium-

coarse sand, and below 20m is overconsolidated fine-medium sand. This soil profile 

agrees well with stratigraphy given by cluster analysis with Nc = 9 as shown in Figure 

3.20 (e). The two segments in cluster 9 correspond to the two overconsolidated layers, 

and cluster 8 corresponds to the normally to lightly overconsolidated layer, and the small 

clusters in the top of the soil profile correspond to the gravelly sand fill. The stratigraphy 

given by cluster analysis also agrees well with the soil profile derived from the soil 
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behavior type index Ic [Figure 3.20 (a)] and the change of the soil unit weight [Figure 

3.20 (b)]. 
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(a)  

 
(b)  

Figure 3.19  Soil stratigraphy delineated by three-dimensional cluster analysis for a 
representative CPT sounding at the Holmen sand site at Drammen, Norway: 

 (a) Nc = 5; (b) Nc = 9.  
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3.5  Three-Dimensional Soil Classification Chart 

With three-dimensional cluster analysis, the soils can be objectively classified into a 

certain number of types, but the actual soil type is still unknown. Therefore, a further step 

is required to characterize the geotechnical properties of each type of soil, where the 

researcher’s expertise or soil classification charts may get involved. Soil stratification by 

three-dimensional cluster analysis is based on the assumption that the soil types are a 

function of the set of normalized parameters (Q, F, B), and a specific location in the 

three-dimensional space Q~F~B corresponds to a specific soil type. Therefore, a three-

dimensional soil classification chart is supposed to exist in the three-dimensional space 

Q~F~B. With a three-dimensional soil classification chart, the process of soil 

classification can then be integrated with the process of three-dimensional cluster 

analysis, resulting in a combined process of soil stratification and classification.  

 

A three-dimensional soil classification chart is proposed herein, based on the trends 

observed from the classification charts developed by other researchers, as well as the 

author’ experience. In the Q ~ F chart of Robertson (1990, 1991) [Figure 3.2 (a)], the 

boundaries between soil behavior type zones 2 to 7 can be approximated as concentric 

circles, and the circle radius Ic  can be used as the soil behavior type index, that increases 

with increasing apparent fines content and soil plasticity (Jefferies & Davies, 1993). 

Jefferies & Davies (1991) suggested the following more generalized equation for the soil 

behavior type index corresponding to the soil classification chart shown in Figure 3.7, 

( )[ ]{ } ( )[ ]22 log3.15.11log3 FBQIc ++−−=    (3-16) 
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During liquefaction analysis, Robertson & Wride (1998) assumed B = 0 and defined the 

soil type index as follows: 

   ( ) ( )[ ] 5.022 22.1loglog47.3 ++−=′ FQIc    (3-17) 

 

The simplified relationship between the soil type index and the soil behavior type has 

been recommended by Jefferies & Davies (1993) and Robertson & Wride (1998), 

respectively, as shown in Table 3.2.  

 

Table 3.2  Boundaries of soil behavior type 

Ic (Jefferies & 
Davies, 1993) 

Ic’ (Robertson & 
Wride, 1998) 

Zone Soil Behavior Type 

Ic’ < 1.25 Ic < 1.31 7 Gravelly sand to sand 
1.25 < Ic’ < 1.90 1.31 < Ic < 2.05 6 Sands: clean sand to silty sand 
1.90 < Ic’ < 2.54 2.05 < Ic < 2.60 5 Sand mixtures: silty sand to sandy silt
2.54 < Ic’ < 2.82 2.60 < Ic < 2.95 4 Silt mixtures: clayey silt to silty clay 
2.82 < Ic’ < 3.22 2.95 < Ic < 3.60 3 Clays: silty clay to clay 

3.22 < Ic’ 3.60 < Ic 2 Organic soils: peats 
 

Jefferies & Davies (1991) noted that for the cases where B is near zero, the soil 

classification chart shown in Figure 3.7 is similar to the Q ~ F chart suggested by 

Robertson (1990, 1991).  

 

In most of the previously developed charts based on Q and B, such as the Robertson 

(1990, 1991) chart in Figure 3.2 (b), the general trend is that given a certain value of Q, 

the absolute value of B increases with increasing apparent fines content and soil 

plasticity. Therefore, it is likely that in a real three-dimensional chart, the apparent fines 
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content and soil plasticity should increase with the increase of the soil behavior type 

index Ic or the absolute value of B.  

 

A series of surfaces can be created to indicate the boundaries between the soil types in the 

suggested three-dimensional space. The boundary surfaces are recommended to be of the 

shape that can be represented by the following equation: 

( ) ( ) ( )2
0

2
0

2
0 loglog kBIYFXQ c −=−+−     (3-18) 

where k and Ic0 are parameters that vary with the boundary surfaces. With k and Ic0 being 

constant, equation (3-18) represents a circle with (X0, Y0) as the center of the circle. It is 

suggested that X0 = 3.47, Y0 = -1.22. The exact equations of the boundary surfaces 

between different soil classification zones are listed in Table 3.3: 

 

Table 3.3  Boundary surface equations of soil behavior type 

 
Related Zones for 

the Boundary 
Surface 

Range for the 
Value of B 

 
Boundary Surface Equation 

 
0< B < 0.655  ( ) ( ) ( )222 231.122.1log47.3log BFQ −=++−     

7 and 6 
-0.6 < B < 0 ( ) ( ) ( )222 3.331.122.1log47.3log BFQ +=++−  

0< B < 1.025 ( ) ( ) ( )222 220.222.1log47.3log BFQ −=++−     
6 and 5 

-0.6 < B < 0 ( ) ( ) ( )222 3.320.222.1log47.3log BFQ +=++−  
0< B < 1.3 ( ) ( ) ( )222 260.222.1log47.3log BFQ −=++−     

5 and 4 
-0.6 < B < 0 ( ) ( ) ( )222 3.360.222.1log47.3log BFQ +=++−  
0< B < 1.4 ( ) ( ) ( )222 295.222.1log47.3log BFQ −=++−     

4 and 3 
-0.6 < B < 0 ( ) ( ) ( )222 3.395.222.1log47.3log BFQ +=++−  
0< B < 1.4 ( ) ( ) ( )222 5.00.422.1log47.3log BFQ −=++−     

3 and 2 
-0.6 < B < 0 ( ) ( ) ( )222 5.20.422.1log47.3log BFQ +=++−  
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Figure 3.21 shows the boundary surface between zone 5 and 4 from different viewpoints. 

It consists two parts (B > 0 and B < 0), and each of them is part of a cone surface that is 

represented by the corresponding equation. The series of the boundary surfaces between 

zone 2 to 7 are shown in Figure 3.22, and it can be seen that the soil type change from 

sandy soils to clayey soils with the decrease of Q, the increase of F, and the increase of 

the absolute value of B.  

 

For B of a certain value, the three-dimensional soil classification chart can be represented 

in two dimensions (Q versus F), and the cases corresponding to B = 0.2 and 0.4 are 

shown in Figure 3.23. As can be seen from this figure, the radius of the boundary circle 

decreases with the increase of B, and zone 7 (gravelly sand to sand) disappears when B = 

0.4. This is reasonable, since as B increases the soil behaves in a way that shows larger 

apparent fines content and soil plasticity. Figure 3.24 presents the three-dimensional soil 

classification chart in two dimensions (Q versus B), with log(F) set to -1 and 0 

respectively. In this figure, the boundaries between different soil types move up along the 

Q axis as F increases, because as F goes up the soil behaves more like fine particulate 

materials. In the case log(F) = -1, the derived two-dimensional chart (Q versus B) is 

similar to the Q ~ B chart proposed by Robertson (1990, 1991). 

 

The three-dimensional soil classification chart is visually more complicated than other 

two-dimensional charts, but it can be implemented on computer easily.  
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(a) 

 
(b) 

Figure 3.21  The boundary surface between soil classification zone 5 and 4: (a) and (b) 
represents the surface viewed in different view point. 

Note: Color and mesh are used to help visualization of the surfaces. 

94



 
 

 
 

                             Zone    Soil behavior type 
2 Organic soils – peats; 
3 Clays – clay to silty clay; 
4 Silt mixtures - clayey silt to silty clay 
5 Sand mixtures – silty sand to sand silt 
6 Sands – clean sands to silty sands 
7 Gravelly sand to sand 
 

Figure 3.22  The Boundary Surfaces between Soil Classification Zone 2 to 7 
Note: Soil type 1, 8, and 9 are not differentiated with other soil types; 

Color and mesh are used to help visualization of the surfaces. 
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(a) 

 
(b) 

 
Figure 3.23  The boundary between soil classification zones given a certain value of B:  

(a) B = 0.2; (b) B = 0.4. 
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(a) 

 
(b) 

 
Figure 3.24  The boundary between soil classification zones given a certain value of 

log(F): (a) log(F) = -1; (b) log(F) = 0. 
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3.6 Application of the Three-Dimensional Soil Classification Chart 

The proposed three-dimensional soil classification chart is applied to CPT data from the 

sites on which the three-dimensional cluster analysis have been used, as well as from 

some other sites which were found problematic in using other soil classification charts.  

 

3.6.1  Soil Classification for Two Offshore Sites in the Canadian Beaufort Shelf 

After Robertson (1990) published the original soil classification charts, Jefferies & Davis 

(1991) used them on two offshore sites in the Canadian Beaufort Shelf. The two sites are 

Tarsiut P-45 and Sauvrak F-45. The normalized CPTu data (Q, F, B) of four geologic 

units are from each site are presented in Table 3.4, with units A, B, C, and D belonging to 

Tarsiut P-45 site, and units E, F, G, and H belonging to Sauvrak F-45. Jefferies & Davis 

(1991) found that the Q ~ B chart proposed by Robertson (1990) did not work well for 

these CPTu data. Then Robertson (1991) updated the Q ~ B charts according to these 

data, but still they do not work satisfactorily for all these data.  

 

Table 3.4  Summary of the soil classification results based on different charts 

 
Q F B Soil Type  Geologic Unit 

Index used by 
Jefferies & 

Davis (1991) 

Data from Jefferies 
& Davis (1991) 

Soil 
Samples 

Q ~ F Chart 
(Robertson, 

1990) 

Q ~ B Chart 
(Robertson, 

1991) 

Proposed 
3D Chart 

A 33 4.5 -0.3 3 4 4 3 
B 30 2.5 -0.1 4 4 5 4 
C 16 3.5 -0.05 3 3 4 3 
D 9.5 2.5 0.25 3 3 3 3 
E 30 8 -0.4 3 3 3 3 
F 25 8.25 0.1 3 3 5 3 
G 14 6.25 -0.35 3 3 3 3 
H 9.5 4.5 0.45 3 3 3 3 
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Table 3.4 lists the soil classification results based on soil samples, the Robertson (1990, 

1991) charts, and the proposed 3D chart. As we can see from Table 3.4, some of the soil 

classification results based on the Q ~ B chart suggested by Robertson (1991) are 

significantly different from the soil types based on soil samples. The proposed three-

dimensional soil classification chart gives more consistent soil classification results.  

 

3.6.2  Soil Classification for the Ariake Clay Site in Japan 

The three dimensional soil classification chart is applied to the CPT data collected at the 

Ariake clay site in Japan (Figure 3.12), and results are compared with soil classification 

charts proposed by Robertson (1990, 1991) and Jefferies & Davies (1993) in Figure 3.25. 

The two charts suggested by Robertson (1990, 1991) give inconsistent results for this 

site, as the Q ~ F chart classified the soils at most of the depth into type 1 (sensitive, fine 

grained), while the Q ~ B chart classified them into type 2 (organic soils - peats) and type 

3 (clays-clay to silty clay). The classification results from the Q ~ F chart are more 

reasonable, for the Ariake clay is well-known for its high sensitivity. According to the 

Jefferies & Davies (1993) chart, the soils are type 2 (organic soils - peats) in the depth 

range from 8m to 17m, while belong to type 2 (organic soils - peats) and type 3 (clays-

clay to silty clay) above 8 m and below 17 m. At some depths, the soil type goes to 0 

(unable to classify), because the Q(1-B) value becomes negative at these depths due to B 

value that is over 1. It results from measurement procedural errors in the original CPTu 

data. The indication of existence of type 2 (organic soils - peats) by the Jefferies & 

Davies (1993) chart is contradictory to the soil profile derived from soil samples from 
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this site. The classification result based on the proposed three-dimensional chart is shown 

in Figure 3.25 (d), and it can be seen that almost the whole deposit belongs to soil type 3 

(clays-clay to silty clay). The proposed three-dimensional chart classifies the soil into 

type 2 to type 7, and does not differentiate type 1 (sensitive, fine grained) from the other 

soil types. Considering this fact, the classification result based on the proposed three-

dimensional chart is reasonable, since the soils at this site consist of about 50% clay 

particles and 40% to 50% silt particles. The results based on probabilistic soil 

classification based on Zhang & Tumay (1999) are presented in Figure 3.25 (f). It shows 

that the probability of sand content increases with depth, while the probability of clay 

content decreases with the depth, which are not consistent with the grain composition 

derived from lab tests.  
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3.6.3  Soil Classification for the NGES site in Opelika, AL 

Similarly, the different soil classification charts are used for the representative CPTu 

sounding (Figure 3.15) performed at the NGES site in Opelika, AL, with the results 

shown in Figure 3.26. The Q ~ F chart of Robertson (1990, 1991) classified the soil in the 

top 2m as type 9 (very stiff fine grained), the depth range from 2m to 11m as type 4 (silt 

mixtures: clayey silt to silty clay), and below 11m as type 3 (clays-clay to silty clay) with 

thin layers of type 4. According to the Q ~ B chart, the top 11m is type 6 (sands: clean 

sands to silty sands), and below 11m is type 5 (sand mixtures: silty sand to sand silty). 

The Q ~ F chart classified the soils at this site as more fine-grained materials than the Q ~ 

B chart. The classification result based on Jefferies & Davies (1993) chart is very close to 

what is given by the Robertson (1990, 1991) Q ~ F chart, since the absolute value of B is 

low. According to the proposed three-dimensional soil classification chart, the soils in the 

top 2m and in the depth range between 4m to 11m are soil type 5, while the soils in the 

depth range between 2m to 4m and below 11m are soil type 4. This agrees well with the 

soil classification derived from lab tests and other in-situ tests [Figure 3.26 (a)]. The 

probabilistic soil classification based on Zhang & Tumay (1999) is shown in Figure 3.26 

(f). It suggests the soil in the upper 4 m is most likely to be clay, while that in the depth 

range from 4 to 11 m is more likely to consist of silty materials. Below 11 m, the 

probability of clay content increases to about 50%. Results of the probabilistic soil 

classification appears to contradict to the grain size distribution shown in Figure 3.17. 
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3.6.4  Soil Classification for the Holmen Sand Site at Drammen, Norway 

Figure 3.27 shows the soil classification results for the Holmen sand site at Drammen, 

Norway. Both the Q ~ F chart and Q ~ B chart of Robertson (1990, 1991) indicate that 

most of the soils at this site are type 5 (sand mixtures: silty sand to sand silty) with thin 

layers of type 6 soil (sands: clean sands to silty sands). The Jefferies & Davies (1993) 

chart and the proposed three-dimensional chart give similar classification results that this 

site mainly consists of type 6 soil with layers of type 5 soils. Compared with the soil 

classification results from laboratory index [Figure 3.27 (a)], all the soil classification 

charts give reasonable results. The probabilistic soil classification shown in Figure 3.27 

(f) indicates that the soil above 20 m has relatively high silt content, which is not 

consistent with the soil profile derived from lab grain size distribution. 
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3.6.5  Soil Classification for a Representative Sounding Performed in Charleston, SC 

For the representative SCPTu sounding (Figure 3.4) performed for at the Cooper River 

Bridge site in Charleston, SC, the results of cluster analysis and soil classification are 

presented in Figure 3.28. From cluster analysis with the cluster number Nc = 9, the 

Cooper Marl below 20m was clearly delineated as one layer, which consists different soil 

than that in the top 20m. Although the Robertson (1990, 1991) Q ~ B chart gives the 

correct classification for soil below 20m as type 3 (clays-clay to silty clay), the Q ~ F 

chart indicates that most of the soil below 20m is type 5 (sand mixtures: silty sand to sand 

silty). The Jefferies & Davies (1993) chart classifies the Cooper Marl soil as type 5 (sand 

mixtures: silty sand to sand silty) with interleaved layers of type 4 (silt mixtures clayey 

silt to silty clay), which is not correct. However, the classification result based on the 

proposed three-dimensional chart consistently suggests that the soil below 20m is type 3, 

which is the correct classification for Cooper Marl. From this case study, it can be seen 

that the three-dimensional cluster analysis can delineate the soils into different layers, and 

the three-dimensional soil classification chart can tell the actual soil type of each layer. 

Probabilistic soil classification is also performed with this sounding, as shown in Figure 

3.28 (e). It incorrectly indicates that the Cooper Marl layer is mostly sand with 10% to 

15% of silt.  
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3.7 Summary 

The three-channel cluster analysis proposed herein for soil geostratification is based on 

the normalized CPTu parameters, Q, B, and F, which are derived from the tip resistance 

qT, pore pressure u2, and sleeve friction fs. Because of the inclusion of all three 

parameters, this type of cluster analysis can be used on all types of CPTu soundings for 

layering and stratification purposes. Furthermore, this thesis suggests measuring the 

similarity between the data points by their Euclidean distance in three-dimensional space, 

which endows similarity with a clear physical meaning. With cluster analysis, the soils 

can be classified objectively and the results are independent of the soil classification 

charts. By grouping similar data points together, cluster analysis can find both the 

obvious as well as subtle changes between soil types. It can also detect outlier data which 

are caused by systematic errors or the irregular structure in the soil deposits. The three-

dimensional cluster analysis has been used for sites of different materials (clay, silt, and 

sand). It is found that cluster analysis can group together data points corresponding to 

soils that have similar grain size distributions. One significant advantage of cluster 

analysis is that it can detect subtleties in CPT measurements caused by change of soil 

properties, which are not readily evident by visual examination of the CPT data, or by 

other available interpretation techniques. 

 

As supplement to the cluster analysis, a three-dimensional soil classification chart is also 

proposed herein. It is based on the observation of trends in available charts, such as 

Robertson (1990, 1991) and Jefferies and Davies (1993), as well as the experience of the 

author in processing CPTu data. Because of the inclusion of all three channels of CPTu 
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data in a single chart, the three-dimensional soil classification chart shows advantages 

over charts that are based on only two or one channels of data. The three-dimensional soil 

classification chart has been found to work quite well for the few selections presented 

here, but as an empirical chart, it may still need additional calibration in the future 

research.  

 

The three-dimensional cluster analysis and the proposed three-dimensional soil 

classification chart can be integrated together in site characterization. The soil 

stratification can be objectively demarcated by cluster analysis, and then soil type of each 

layer can be analyzed by using the three-dimensional soil classification chart. Since both 

the cluster analysis method and the three-dimensional soil classification chart can be 

implemented on computer, the soil stratification and classification process can be 

automated, making them much faster and more objective for data handling. 
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CHAPTER IV 
 
 

AUTOMATED POST-PROCESSING OF SCPTU DATA:  
SOIL PROPERTIES 

 
 

4.1  Overview 

Results from seismic cone penetration tests (SCPTu) are increasingly used to interpret 

site-specific soil properties for geotechnical analysis and design. The penetration data, 

which include tip resistance qT, sleeve friction fs, and porewater pressure um, reflect 

measurements on soil behavior related to a failure state of stress, while the shear wave 

velocity Vs provides the small strain stiffness corresponding to the nondestructive range 

(Mayne, 2005). These measurements can be used to characterize the subsurface layering, 

soil behavioral type, strength properties, stiffness, and stress state, as well as evaluate 

liquefaction potential. Figure 4.1 depicts the concept for interpretation of soil properties 

from SCPTu results, and it will be discussed in detail later. 

 

Various correlations have been suggested to determine parameters related to the soil 

properties. Using these correlations, computer programs have been developed to 

automate the process of deriving the parameters from the SCPTu data, as listed in Table 

4.1. Some of these can only run in a DOS environment, which is inconvenient nowadays 

since DOS is antiquated operating system. Most of these software programs cost from 

hundreds to thousands US dollars. Furthermore, the correlations used in the software are 

limited to old methods of analysis (20 years +) and to those implemented by the software 
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developers. Since new relationships are being developed on a frequent basis, the older 

programs cannot adapt to the best available methods.   

 

 
Legend 
qT: Cone tip resistance  fs: Sleeve friction 
u2: Shoulder porewater pressure u1: Tip porewater Pressure 
Vs: Shear wave velocity  Vp: Compression wave velocity 
Gmax: Small-strain shear modulus ρT: Total unit mass density 
S: Degree of saturation  e0: Initial void ratio 
σvo’: Effective overburden stress u0: Hydrostatic porewater pressure 
ch: Coefficient of consolidation kh: Hydraulic permeability 
IR: Rigidity index   CSSM: Critical-state soil mechanics 
Mc: Slope of critical state line  Y1, Y2, Y3: Yield surfaces 
G: Shear modulus   su: Undrained shear strength 
φ’: Peak friction angle   σp’: Preconsolidation stress 
OCR: Overconsolidation ratio  q: Deviator stress 
p’: Mean effective stress  K0: Earth pressure coefficient at rest 
K0NC: K0 for normally consolidated soil 

 
Figure 4.1  Conceptual framework for interpretation of soil property evaluation from 

results of seismic cone penetration test (Mayne, 2005) 
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Table 4.1  Software developed for post-processing of CPT data 

 
Software Developer Operating 

System 
Features Website & Price 

CONEPLOT University of 
British 

Columbia 

DOS Plotting of raw cone data 
with full control of depth 

axis (vertical) and 
parameter scaling with 1 
to 6 graphs in portrait or 

landscape. 

http://www.civil.ubc.ca 
 

$200 

CONEINT University of 
British 

Columbia 

DOS Menu driven program for 
CPT and CPTU 

interpretation. Calculates 
different correlation 

parameters. 

http://www.civil.ubc.ca 
 

$350 

DCCONE DC-Software 
Doster & 

Christmann  

Windows Plots cone resistance, 
sleeve friction, and 

friction ratio 

http://www.dc-
software.com 

$450 
EDISON Swedish 

Geotechnical 
Institute 

Windows Graphically presents the 
recorded CPT data and 
the derived parameters 

http://www.geotek.se 
 

INSITU Geo&soft 
International 

Windows Calculates parameters, 
and the results can be 
exported in Microsoft 

Word 97 format 

http://www.geoandsoft.com 
$450 

CPTask GeoMil 
Equipment 

B.V. 

Windows Calculates parameters 
from CPTu data and 

graphically present the 
results. 

http://www.geomil.com 
 

PlotCPT GeoMil 
Equipment 

B.V. 

DOS Calculates and plots 
parameters 

http://www.geomil.com 
 

CPT-pro Geosoft Windows Process multiple 
soundings in a project, 

and generate soil profile 
and site map 

http://www.geosoft.com.pl 
$1500 

Static 
penetrometer 

Alpes-Geo-
Conseil 

Mac Computes bearing 
capacity of soil for 
shallow and deep 

foundations from CPT 
data 

http://www.alpesgeoconseil
.com 

Geo-
Explorer 

Gouda-Geo 
Equipment 

Windows Record and display data 
CPT data 

http://www.gouda-geo.com 
$1600 

Static 
Probing 

GeoStru 
Software  

Windows Calculates and plots 
parameters, and computes 

bearing capacities of 
shallow and deep 

foundations 

http://www.geostru.com 
 

$300 
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Nowadays, most engineers would rather make their own Excel spreadsheet, and input the 

correlation equations by themselves for the purpose of post processing SCPTu data and 

determining the parameters. It is common to find that engineers dealing with SCPTu data 

have various Excel spreadsheet templates for different purposes. Geotechnical engineers 

like Excel spreadsheet, because it has powerful features in both calculation and graphing. 

However, the disadvantage of Excel is that different templates need to be developed, 

even if sometimes there are only minor differences.  

 

In this thesis, a free software program (InSituData) is developed for post-processing of 

SCPTu data. It has an interface with Excel but provides much more convenience in the 

setup, choice of parameters, and post-processing of in-situ test data. Based on SCPTu 

data, it can classify the soils into different categories, and then derive a much broader 

suite of soil engineering parameters from the correlations recommended by the author. It 

can also perform liquefaction analysis based on cone tip resistance (qT) and shear wave 

velocity (Vs). InSituData also allows the user to easily add new relationships that become 

available. The software can communicate with Microsoft Excel installed on the user’s 

computer easily, thus allowing the users taking advantages of features of both InSituData 

and Excel. 

 

4.2  Soil Classification 

As discussed in Chapter 3, geostratigraphy and soil classification are the basis for all 

subsequent geotechnical analysis and calculations. In the software InSituData, soil 
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classification is performed based on soil classification charts suggested by Robertson et 

al. (1986).  

 

4.3  Parameters from SCPTu Data 

Mayne (2001, 2005) has summarized selected soil engineering parameters that can be 

derived from SCPTu data. The specific correlations that are self-contained and 

implemented within InSituData to derive parameters are presented herein. 

 

4.3.1  Unit Weight γ  

Compiled data of saturated unit weights ( satγ ) and shear wave velocities (Vs) from all 

types of saturated geomaterials ranging from clays to silts and sands to gravels (Figure 4-

2) found the following trend (Mayne, 2001): 

zVssat log61.1log32.8 −=γ     (4-1) 

where satγ  is the saturated unit weight in kN/m3, Vs in m/s, and z is the depth in meters. 

Based on such correlation, the saturated unit weight of soils can be calculated. 

 

The shear wave velocity of dry sands has been found to be primarily a function of void 

ratio (e) and confining stress ( ′
0σ ), based on results of resonant-column tests (Richart et 

al., 1970). As dry unit weight ( )eG ws += 1γγ , where Gs is the specific gravity and wγ  is 

unit weight of water, γ  can be estimated by assuming Gs = 2.7. The equivalent depth (z) 

corresponding to the confining stress ( ′
0σ ) can be estimated from γσ ′= 0z . Therefore, 
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dry unit weight (γ ) can be correlated with shear wave velocity (Vs) and the depth (z) by 

the following equation (Figure 4.3): 

1.42log4.7log9.26 −−= zVsγ    (4-2) 

where γ  is in kN/m3, Vs in m/s, and z is in meters.  
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Figure 4.2  Correlation for saturated unit weight from depth and shear wave velocity, Vs 
(Mayne, 2001) 

 

Hardin and Black (1969) noticed that the correlation among small strain shear modulus 

Gmax, void ratio e, and confining stress ′
0σ , which were originally developed for clean 

sands, also worked well for normally consolidated clays. As 2
max sTVG ρ= , where 
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gTT γρ =  is total mass density, it is expected that equation (4-2) can also be applied to 

dry clays, at least for a first approximation.  
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Figure 4.3  Correlation for dry unit weight from depth and shear wave velocity, Vs [data 
from Richart et al. (1970)] 

 

The total unit weight ( Tγ ) is equal to saturated unit weight ( satγ ) for soils beneath the 

groundwater table, and it is equal to dry unit weight (γ ) for sands above groundwater 

table. As to clayey soils above ground water table, their total unit weight ( Tγ ) and shear 

wave velocity (Vs) are related to the saturation degree caused by capillarity effect (Cho & 

Santamarina, 2001). Thus, the situation may be much more complex and different. In 

some cases, the clays are fully saturated due to full capillarity. 
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Since the total unit weight ( Tγ ) can be estimated from shear wave velocity (Vs), the total 

and effective overburden stresses ( voσ  and ′
voσ ) can thus be calculated using 

∫= 0
dzTvo γσ , ( )GWTzu w −= γ0 , and 0uvovo −=′ σσ , where wγ  is the unit weight of 

water, GWT is groundwater table, u0 is the hydrostatic porewater pressure, and z is the 

depth. If the measured Vs is not available, its value can be estimated by correlating with 

tip resistance qT, which will be discussed in the following subsection. 

 

4.3.2  Shear Wave Velocity Vs 

In SCPTu soundings, the shear wave velocity (Vs) is directly measured, using either true- 

or pseudo-interval at 1-m depth increments. As this is made easier by autoseis sources 

and post-processing with ShearPro, this is the preferred approach. However, for CPTu 

soundings with no seismic data, correlation equations are available relating Vs with the 

CPTu data. Based on studies of two Italian sands (Figure 4.4), Lai & Lo Presti (1988) and 

Baldi et al. (1989) correlated Vs with qT and effective overburden stress 0vσ ′  for 

uncemented and unaged clean quartz sands as follows, 

( ) ( ) 27.0
0

13.0277 vTs qV σ ′=     (4-3) 

where Vs is in m/s, and qT and 0vσ ′  are in MPa . 
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Mayne & Rix (1995) compiled both CPTu data and Vs measurements from 31 different 

clay sites, and proposed the following first-order correlation equation based on a 

statistical study as shown in Figure 4.5: 

( ) 627.075.1 Ts qV =      (4-4) 

where Vs is in m/s, and qT in MPa . They found much better estimates if Vs was evaluated 

from qT, void ratio (e0), and degree of continuity (i.e., intact vs. fissured). 

( ) ( ) 27.0
0

13.0277 vTs qV σ ′=
qT and σ’v0 in MPa

( ) ( ) 27.0
0

13.0277 vTs qV σ ′=
qT and σ’v0 in MPa

 
 

Figure 4.4  Relationship between shear wave velocity and cone tip resistance based on 
two kinds of Italian sands (Lai & Lo Presti, 1988; Baldi et al., 1989) 
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Figure 4.5  Correlation between shear wave velocity and cone tip resistance in clays 
(Mayne & Rix, 1995) 

 

Based on compiled data from 61 sites including clays, sands, and intermediate soil types, 

Hegazy & Mayne (1995) suggested the following correlation for all soil types: 

( )[ ]
3.0

67.1 1004.11log1.10 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

T

s
Ts q

f
qV    (4-5) 

where Vs is in m/s, and qT and fs are both in kPa. 

 

Even though Vs is measured in a downhole manner directly during SCPTu, there are 

other uses for these correlative relationships. For instance, they can serve as a check to 

investigate whether the soils are non-cemented or infer whether cementation is present 
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(e.g. Lunne et al., 1997). Also, in partially saturated soils, the magnitude of Vs can greatly 

increase during de-saturation (Cho & Santamarina, 2000). Therefore, a more critical 

situation can be encountered (i.e. fully saturated) when the groundwater table rises and/or 

in period of heavy rain fall infiltration. In addition, they can aid in a more definitive soil 

behavioral type, such as charts utilizing Q vs Gmax/qT (Lunne et al., 1997). 

 

4.3.3  Normalized Cone Penetration Measurements 

Based on equations (3-1) to (3-3), the cone penetration measurements (qT, u2, fs) are 

normalized to (Q, B, F). These normalized parameters can be used for deriving other 

parameters, such as soil behavior index Ic and peak friction angle φ ′ . 

 

4.3.4  Soil Behavior Index Ic 

The soil behavioral type index Ic can be used to estimate fines content of the soil. It was 

originally calculated according to equation (3-16) (Jefferies & Davies, 1991), but then 

modified to equation (3-17) (Robertson & Wride, 1998). The latter equation is used in 

InSituData to derive this parameter, for it is contained within the soil classification 

scheme proposed by Robertson (1990, 1991) and liquefaction evaluation procedure by 

Robertson & Wride (1998). 
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4.3.5  Peak Friction Angle φ ′  

Based on statistical analyses of CPT calibration chamber data corrected for boundary 

effects, Kulhawy & Mayne (1990) suggested that in clean quartzitic sandy soils, the peak 

friction angle φ ′  can be approximated by the following equation: 

    ( )1log0.116.17 T
o q+=′φ     (4-6) 

where φ ′  in degrees, ( )
5.0

1 ⎟
⎠
⎞⎜

⎝
⎛ ′= atmvoatmTT qq σσσ , ′

0vσ  is the effective overburden 

stress, and atmσ  is atmosphere pressure ( atmσ  = 1 bar ≈ 1tsf  ≈ 100kPa). 

 

More recently, drained triaxial compression tests have been performed on undisturbed 

samples of carefully-frozen sands from four river sites (Mimura, 2003). The measured φ ′  

values were found to agree well with those inferred from the cone tip resistance based on 

equation (4-6), as shown in Figure 4.6 (Mayne, 2005). Equation (4-6) also provides 

excellent agreement with the φ ′  values measured from consolidated triaxial tests on 

samples recovered from silty sand of the Piedmont geology (Figure 4.7). 

 

In order to interpret φ ′  from SCPTu data in clay, the NTH method has been developed to 

provide an effective stress-limit plasticity solution for undrained penetration (Senneset et 

al., 1989). For the classical bearing capacity case, Figure 4.8 shows the theoretical 

relationship between φ ′  and the cone resistance number Nm that is defined by the 

following: 

( ) ⎟
⎠
⎞⎜

⎝
⎛ ′+′−= aqN vvTm 00 σσ      (4-7) 
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where 0vσ  is the overburden stress, φ ′′=′ cotca  is attraction, and c′  is the effective 

cohesion intercept. For the simplified case where 0=′a , mN  equals the normalized cone 

tip resistance ( ) ′−= 00 vvTqQ σσ . Mayne (2005) suggested an approximate 

deterministic expression for normalized porewater pressure values: 0.1 < B < 1.0 as 

following: 

( )QBB log336.0256.05.29 121.0 ++=′φ    (4-8) 

which is valid for ranges of friction angle: oo 4520 ≤′≤ φ . 
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Figure 4.6  Comparison of measured φ ′  from frozen sand samples with that inferred 
from CPT normalized tip resistance (Mayne, 2005) 
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Figure 4.7  CPT profiling of φ ′  in silty sand (30% fines) in Atlanta, Georgia  
(Mayne, 2001) 
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Figure 4.8  Effective φ ′  (dots) from NTH undrained penetration theory (Senneset et al., 

1989) and simplified approximation (lines) (Mayne, 2005) 
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4.3.6  Lateral stress coefficient K0 and overconsolidation ratio OCR 

Based on a statistical evaluation of 26 different series of calibration chamber tests, the 

effective lateral stress ′
0hσ  in clean quartz sands can be estimated from CPTu data using 

the empirical correlation shown Figure 4.9. Therefore, the lateral stress coefficient K0 can 

be expressed by the following equation: 

27.0

31.0

0

22.0

0

0
0 19.0 OCR

q
K

atm

v

atm

T

v

h

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

′
=

σ
σ

σσ

σ
   (4-9)  

where ′
0vσ  is the effective overburden stress, atmσ  is atmosphere pressure, and OCR is 

the overconsolidation ratio, defined as the ratio of the preconsolidation stress ′
pσ  to the 

existing overburden stress ′
0vσ . 
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Figure 4.9  CPT calibration chamber relationship for evaluating lateral stresses in unaged 

clean quartz sands (Mayne, 2001) 

Note: ′
0hσ  and ′

0vσ  are in units of kPa and Tq  is in MPa 
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From laboratory studies, the lateral stress coefficient K0 for soils that are not highly 

structured or cemented can be calculated from their overconsolidation ratio OCR: 

( ) φφ ′′−= sin
0 sin1 OCRK      (4-10) 

Solving equations (4-9) and (4-10) provides the following solution for OCR in sands 

(Mayne, 2001): 

( )
( )
( )

( )27.01

31.0

22.0

sin1
192.0

−

′ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′−
=

α

σσ

σ
φ

atmvo

atmTq
OCR    (4-11) 

where φα ′= sin . 

 

For clays, Mayne (1991) used spherical cavity expansion theory and critical state soil 

mechanics concepts to relate the OCR to CPT data, and suggested the following equation 

to evaluate the preconsolidation stress ′
pσ : 

( )R

vT
p

IM
q

ln3
11

0

+

−
≈′

σ
σ     (4-12) 

where ( )φφ ′−′= sin3sin6M , and uR sGI = = rigidity index. Adopting representative 

values of o30=′φ  (M=1.2) and IR = 100, equation (4-12) becomes: 

( )voTp q σσ −=′ 33.0      (4-13) 

The equation provides excellent agreement with the CPTu-oedometer data involving a 

variety of different clays, as shown in Figure 4.10. Thus, as a first approximation the 

OCR in clays can be estimated from the following correlation (Mayne, 2005): 

( ) ′−= vovoTqOCR σσ /33.0     (4-14) 
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Since the effective friction angle φ ′  and the OCR can be derived, the lateral stress 

coefficient K0 can be estimated using equation (4-10). 
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Figure 4.10  Preconsolidation stresses in clay from net tip resistance  
(Kulhawy & Mayne, 1990) 

 

4.3.7  Relative Density DR 

Relative density (DR) only applies to sands with fines content FC < 16%. Based on 

calibration chamber studies, the relationship between relative density DR of clean sands 

and CPTu data is suggested to be of the following form (Kulhawy & Mayne, 1991): 

2.0
1100

OCRQ
q

D
F

T
R ⋅
=     (4-15) 
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where DR is in percentage (%), QF is the overall cone factor (average QF = 305 for 26 

types of sands), and ( )
5.0

1 ⎟
⎠
⎞⎜

⎝
⎛ ′= avoaTT PPqq σ . Figure 4.11 summarized the calibration 

chamber studies on the correlation between Dr and the cone tip resistance. The parameter 

QF varies from 280 for high compressibility sands to 332 for low compressibility 

normally consolidated sands. These relationships can be quantified approximately as 

following (Kulhawy & Mayne, 1991): 

    2.0
1

305
100

OCR
qD T

R =      (4-16) 
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Figure 4.11  Summary of calibration chamber studies on the correlation between relative 
density and normalized cone tip resistance in clean quartz sands  

(after Kulhawy & Mayne, 1990) 
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4.3.8  Undrained Shear Strength su 

Based on a critical state soil mechanics approach, Mayne (2005) suggested evaluating the 

undrained shear strength su of clay as following: 

Λ′′= OCRs vu φσ sin2
1

0     (4-17) 

where the strength mode represents that in direct simple shear (DSS), Λ = 1- Cs/Cc = 

plastic volumetric strain potential (Wroth, 1984), Cs = swelling index, and Cc = virgin 

compression index. For “normal” unstructured clays, Λ is about 0.8, and increases to Λ = 

1 for structured and sensitive soils. Figures 4.12 and 4.13 show the dependency of 

′
0vus σ  on φ ′  for normally consolidated and overconsolidated DSS data, respectively. 

The effect of fissuring is important too, as illustrated in Figure 4.13, as it can reduce su by 

a factor of 2 or more, depending upon the degree of cracks and fissures.  
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Figure 4.12  Normalized undrained strength with φ ′  for normally consolidated clays 

(Mayne, 2005) 
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Figure 4.13  Normalized undrained strength with OCR and φ ′  for intact and fissured 
overconsolidated clays (Mayne, 2005) 

 
 

4.3.9  Small-Strain Modulus 

As mentioned in Chapter 2, the small-strain shear modulus can be derived from the 

equation 2
max sTVG ρ= , where Tρ  is the unit mass density. The corresponding small-

strain Young’s modulus can be determined from ( )ν+= 12 maxmax GE , where ν  is the 

Poisson’s ratio. The Poisson’s ratio ν  is about 0.2 for sands and clays under drained 

conditions, and it is equal to 0.5 for clays and silts for undrained conditions. 
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4.3.10  Parameters Related to Liquefaction Evaluation 

The software, InSituData, can also compute parameters related to liquefaction evaluation, 

such as stress-normalized cone tip resistance (qc1N), the grain-characteristic correction 

factor (Kc) for apparent fines content (FC), equivalent clean sand stress-normalized 

penetration resistance [(qc1N)cs], and cyclic resistance ratio (CRR) in the event of 

earthquake of moment magnitude 7.5 (CRR7.5). These parameters will be discussed 

further in Chapter 5. 

 

4.4  Software to Automate Post-processing of the SCPTu Data - InSituData 

The software program (InSituData) is developed to automate post-processing of cone 

penetration data. It is written with Visual Basic, and runs in operating systems such as 

Windows 98/2000/XP. The launcher interface for InSituData is shown in Figure 4.14.  

 

 
 

Figure 4.14  Launcher interface for the software InSituData 
 

The user can input either CPTu2 or SCPTu2 data into the program. The raw data can be 

loaded into the software from ASCII test type files. After the data file is selected [Figure 
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4.15 (a)], the content of the file is displayed in the window as shown in Figure 4.15 (b). 

By specifying the number of title lines in the data file, the header of the file which is not 

data input can be excluded from loading into the software.Alternatively, InSituData can 

also accept raw data by copying from Excel spreadsheet and paste them in the software.  

 

As an example, the raw SCPTu data (depth, qc, fs, u2, Vs) collected at the Walker site in 

Marked Tree, Arkansas, is processed here. This site will be discussed in more details later 

in Chapter 6. Figure 4.16 shows that the raw data are pasted into the software after 

copying from an Excel spreadsheet. By clicking on the cells in the “Assign Data 

Columns” window, the columns can be named after the selection of the user from the 

pull-down list. They can also be named after what is typed in the cells by the user. The 

units of the data columns are specified here by selecting from the pull-down list. If the 

names and units of the columns have been set as default, they can be loaded as default. 

The values of the ground water table (GWT), net area ratio (an), and other related 

information can be specified on the main form of the program. 

 

After the data columns are named, the “Calculate” button in the tool bar of the software is 

enabled. By clicking this button, the “Calculate Parameters” window pops out [Figure 

4.17 (a)]. The water table is input here, and the parameters of interest to the user can be 

selected for computation. The parameters are calculated using the correlations 

recommended by the user herein. Figure 4.17 (b) shows the software interface with data 

columns corresponding to the calculated parameters added in. 
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(a) 

 

 
(b) 

 
Figure 4.15  Load raw CPTu data into the software InSituData: (a) Open the file 

containing raw CPTu data; (b) Displaying raw CPTu data 
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Figure 4.16  Assign names and units to the data columns after they are loaded into the 
software InSituData 

 

To give the user more flexibility, the software allows the user to define the preferred 

correlation equations (Figure 4.18). The name of the parameter and the formula are input 

through the “Equations” window. Unlike that in Excel, the equations contained within 

InSituData use variables, making them more straightforward. The user-defined equations 

can be saved for future use. By selecting the equations saved before, the same parameters 

can be calculated repeatedly for additional soundings. 
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(a) 

 

 
(b) 

 
Figure 4.17  Calculate parameters from the raw CPT data: (a) Select the parameters to 

calculate; (b) Calculated parameters displayed. 
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Figure 4.18  Input equations into the software program InSituData 
 

The parameters calculated by this software can be plotted in charts similar to those in 

Excel, as shown in Figure 4.19 (a). Charts can be generated and added as decided by the 

user. By setting these charts as default, the same charts are presented by default in the 

future for new raw input soundings. The “Properties” window pops out by double 

clicking on the charts, and properties of the charts can thus be configured. Configuring 

the chart properties in this software is similar to that in Excel. 

 

By clicking the “Export to Excel” button on the tool bar, both the data and the charts 

generated in the software are output to a newly generated Excel spreadsheet. Figure 4.20 

shows charts exported to Excel, after the sounding from the Walker site is processed by 
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the software and parameters are generated based on the correlation equations 

recommended by the author.  

 

 
(a) 

 

 
(b) 

Figure 4.19  Visualization of SCPTu data and derived parameters in the software 
InSituData: (a) Display of the SCPTu data and derived parameters in separate plots; (b) 

Configuring of the plots. 
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4.5  Summary 

Software codes currently available for processing SCPTu data generally can only 

compute a small number of soil parameters. These few parameters can only be calculated 

from correlations implemented by the software developers, and many existing codes 

utilize older interpretative relationships, not the latest methods. A new free software 

program (InSituData) is developed to automate post-processing of SCPTu data. It 

provides soil classification and calculates more soil engineering parameters based on 

methods recommended by the author. It can also perform liquefaction analysis based on 

cone tip resistance and shear wave velocity. InSituData provides a convenient and easy 

means for the user to enter updated and new equations for CPT interpretation, as they 

become available. The equations use variables, which is more straightforward and make 

it easier to detect errors. Due to the popularity of Excel in engineering practice, the 

software has an interface similar to that of Excel, and can communicate with Excel easily. 

Finally, InSituData is downloadable as freeware and available for general use. 
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CHAPTER V 
 
 

LIQUEFACTION EVALUATION METHODS BASED ON  
SCPTU SOUNDINGS 

 
 

5.1  Synopsis 

Liquefaction is one of the major disruptions that threaten the safety of civil engineering 

structures during earthquakes. Figure 5.1 shows the tilted buildings resulted from 

liquefaction induced by the 1964 Niigata earthquake in Japan, the 1999 Kocaeli (Izmit) 

earthquake in Turkey, and the 1999 Chi-Chi earthquake in Taiwan, as well as the road 

cracking from the 2002 Alaska earthquake in the USA. As seismic waves generated by 

fault rupture propagate towards the ground surface, the structure of near-surface 

sediments is broken particularly by the cyclic shear waves. Sandy soils that are water-

saturated and loosely packed will tend to compact, leading to an increase in porewater 

pressure. If porewater pressure increases to the point that it equals the overburden stress, 

the sediment liquefies and can behave like a viscous liquid (Seed and Lee, 1967).  

 

Extensive research has been conducted in the laboratory on the liquefaction response of 

sandy soils. In laboratory tests, the seismic demanding of the soils is usually expressed in 

terms of cyclic stress ratio ′= 0στCSR , where ′
0σ  is the effective confining stress. For 

simple shear test, τ  is the applied horizontal shear stress, whereas in triaxial test, 

2/)( 31 σστ −= , where 1σ  and 3σ  are the maximum and minimum principle stresses, 

respectively. It is found that for a certain number of stress cycles, the threshold stress 

ratio that causes initial liquefaction increases with relative density DR, as shown in Figure 
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5.2. The relative density DR in sandy soils has been correlated with results from field 

tests, such as the blow count N from standard penetration tests (SPT), the tip resistance qT 

from cone penetration test (CPT), the horizontal stress index KD from dilatometer test 

(DMT), and the shear wave velocity Vs from downhole seismic test (DHT). These in-situ 

measurements must first be normalized for effective stresses and then serve as a surrogate 

for in-place relative density. 

 

    
   (a)      (b) 

   
         (c)             (d)    
 

Figure 5.1 Consequences of liquefaction induced by earthquakes: (a) 1964 Niigata 
earthquake in Japan; (b) 1999 Kocaeli (Izmit) earthquake in Turkey; (c) 1999 Chi-Chi 

earthquake in Taiwan; (d) 2002 Alaska earthquake in the USA 
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Figure 5.2  Test results of stress ratio to trigger initial liquefaction in shaking table and 

triaxial test (Seed, 1976) 
 

For the SPT, Figure 5.3 presents the recent empirical correlation between (N1)60/DR
2 and 

the void ratio range (emax – emin), as expressed by the following equation (Cubrinovski & 

Ishihara, 2002): 

( ) 7.1
minmax

2
601 7.11)(

eeD
N

R −
=     (5-1) 

where (N1)60 is stress-normalized SPT blow counts, emax and emin are the maximum and 

minimum void ratios, respectively. The void ratio range (emax – emin) was found to be 

correlated with mean grain size D50 (mm) as follows (Cubrinovski & Ishihara, 1999): 

50
minmax

06.023.0
D

ee +=−     (5-2) 

 

The correlation between normalized tip resistance qT1 and relative density DR has been 

shown previously in Figure 4.11 in Chapter 4. Correlations between horizontal stress 
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index KD from dilatometer test (DMT) and DR are also available (e.g., Robertson & 

Campanella, 1986; Jamiolkowski et al., 2003). Although no direct correlation between 

normalized shear wave velocity (Vs1) and DR has been established, Vs1 is found to be 

related to void ratio e (Robertson & Fear, 1995; Robertson et al., 1995), indicating a link 

between Vs1 and DR. Due to the correlations between the various field test data and DR, 

liquefaction criteria can be developed from in-situ field measurements by surrogating DR 

in lab testing, as illustrated in Figure 5.4. 
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Figure 5.3  Empirical correlation between (N1)60/DR

2 and (emax – emin)  
(after Cubrinovski & Ishihara, 2002) 

Note: The relative density DR is in decimal. 
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Many methods have been proposed for liquefaction evaluation based on the results of 

cone penetration testing, as summarized in Table 5.1. Most of them can be classified into 

two categories, which include cyclic stress-based procedures and the energy-based 

procedures. Both types of procedures compare the seismic loading imparted to the soil by 

the earthquake with the threshold loading that is required to induce liquefaction. If the 

seismic loading is higher than the threshold loading, liquefaction likely occurs; otherwise, 

liquefaction is not likely. These procedures are largely based on empirical observations of 

laboratory and field data, and they are refined as a result of newer studies and increased 

number of liquefaction case histories. 
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Figure 5.4  Development of cyclic resistance ratio (CRR) curves  

from field and lab testing 
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Table 5.1  Summary of liquefaction evaluation methods based on SCPTu data 

Category Field 
Data 

Reference Comments 

Seed et al. (1983) 
 

Robertson & Campanella (1985) 
 

Seed & de Alba (1986) 
 

 
 
Based on SPT criteria and correlations 
between qT and N 

Shibata & Teparaksa (1988) 
 

Based on database comprising only CPT 
data 

Mitchell & Tseng (1990) Based on calibration chamber tests and a 
penetration resistance theory 

Farrar (1990) Uses state Parameter, ψ, and relation by 
Seed & de Alba (1986) 

Suzuki et al. (1995) Uses qT1 and Friction Ratio (FR), with CPT 
database from Japan 

Olsen & Koester (1995) Uses qT1 and Friction Ratio (FR) from CPT 
database 

Stark & Olson (1998) Based on CPT database compiled by 
Shibata & Teparaksa (1988), USGS, and 
others 

Robertson & Wride (1998) Based on database compiled by Suzuki et 
al. (1995) and Stark & Olson (1998) 

Juang & Jiang (2000) 
 

Relate liquefaction safety factor Fs to 
liquefaction probability 

Boulanger (2003) Reevaluated the effect of overburden stress 
using a theortical framework 

 
 
 
 
 
 
 
 
 
 
 
 

qT 

Carraro et al. (2003) 
 

Based on laboratory chamber testing of 
clean to silty sands with nonplastic fines 

Seed et al. (1983) Based on SPT criteria and correlations 
between Vs and N 

Robertson et al. (1992) 
 

Kayen et al. (1992) 
 

Lodge (1994) 
 

Andrus & Stokoe (2000) 
 

 
 
 
Based on database comprising Vs data from 
seismic regions 

 
 
 
 
 
 
 
 
 
 

Stress-
based 

 
 
 
 
 
 

Vs 

Juang et al. (2001) Relate liquefaction safety factor Fs to 
liquefaction probability 

Energy-
based 

qT Kayen & Mitchell (1997) Uses Arias intensity and field case histories 
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5.2  Stress-based Procedures 

5.2.1  Cyclic Stress Ratio (CSR) 

In the stress-based procedures, the level of seismic loading caused by the earthquake is 

expressed in terms of the cyclic stress ratio (CSR), which is defined by Seed & Idriss 

(1971) as following 

′=
vo

avCSR
σ

τ
      (5-3) 

avτ  is the average equivalent uniform shear stress, and ′
0vσ  is the effective vertical stress. 

Based on an analysis of a number of time-histories of shear stress in soil deposit obtained 

in laboratory, Seed & Idriss (1971) found that avτ  is about 65% of the maximum 

measured shear stress, maxτ . The CSR can therefore be derived from the following 

equation: 

′=
vo

CSR
σ

τ max65.0      (5-4) 

Assuming that the soil column above a soil element at depth h behaves as a rigid body, 

the maximum shear stress developed during an earthquake can be assessed from the 

following relationship (Seed & Idriss, 1971): 

    ( ) dvoh r
g

a
στ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= max

max     (5-5) 

where ( )hmaxτ  is the shear stress at depth h, g is acceleration due to gravity, 0vσ  is the 

total vertical stresses,  and dr  is a stress reduction coefficient that accounts for the 
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flexibility of the model soil column. Therefore, for the conventional simplified procedure 

of liquefaction evaluation, the cyclic stress ratio is expressed as: 

d
vo

vo

vo

av r
g

a
CSR ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== '

max
' 65.0

σ
σ

σ
τ

   (5-6) 

The 1996 National Center for Earthquake Engineering Research (NCEER) and 1997 

NCEER/National Science Foundation (NSF) workshops on the evaluation of soil 

liquefaction resistance (Youd et al., 2001) recommends that the value of dr to be the 

average of the values suggested by Seed & Idriss (1971), as shown in Figure 5.5. It can 

be approximated as following (Robertson & Wride, 1997): 

  rd = 1.0 - 0.00765 z   for z < 9.15 m   (5-7 a) 

  rd = 1.174 - 0.0267 z   for 9.15 < z < 23 m  (5-7 b) 

  rd = 0.744 - 0.008 z   for 23 < z < 30 m  (5-7 c) 

  rd = 0.5    for z > 30 m   (5-7 c) 

where z is depth in meters.  

 

5.2.2  Cyclic Resistance Ratio (CRR) Based on SPT Blow Counts N 

The threshold loading required to induce liquefaction is quantified as a function of the 

cyclic resistance ratio (CRR), which in turn is correlated to field data, such as the SPT 

blow counts N, the tip resistance qT, or the shear wave velocity Vs. The CRR is used to 

compare the available soil resistance with the level of ground shaking represented by the 

cyclic stress ratio (CSR). Therefore, if the CSR value is higher than the CRR, the soil will 
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likely liquefy; otherwise, it will not. Various researchers have proposed ways to evaluate 

the cyclic resistance ratio (CRR). 

 

Value suggested by 
Youd et al. (2001)

Value suggested by 
Youd et al. (2001)

 
 

Figure 5.5  Stress reduction coefficient versus depth curves developed by Seed and Idriss 
(1971) and suggested by Youd et al. (2001) 

 

Since the standard penetration test (SPT) has been the most widely used field testing 

method, abundant test data enabled the development of liquefaction critera based on the 

SPT blow count N (e.g. Tatsuoka et al., 1980; Tokimatsu and Yoshimi, 1983; Seed et al., 

1985; Ishihara, 1993; Fear and McRoberts, 1995; Cetin et al., 2004). The N value is the 

number of repetitive blows required to drive the sampler 30 cm during the SPT test. The 

value of N is usually corrected to N60 corresponding to 60% energy efficiency before 

used in analysis due to variation of systems. Since the value of N60 varies with stress 
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level, overburden stress normalization factors are usually used to provide a consistent 

point of reference. The stress-normalization of N60 takes the form: 

( ) 60601 NCN N ⋅=      (5-8) 

where ( )601N  is the value corresponding to a reference stress of one atmosphere ( atmσ ), 

and CN is the normalization factor for overburden stress. The normalization factor CN is a 

function of the effective overburden stress at the depth where the penetration value was 

obtained. A comprehensive review of different CN recommendations can be found in 

Kulhawy & Mayne (1990). The simplest expression for CN is as follows (Liao & 

Whitman, 1986): 

    
5.0

0 ⎟
⎠
⎞⎜

⎝
⎛ ′= vatmNC σσ      (5-9) 

where atmσ  is atmosphere pressure, and ′
0vσ  is effective overburden stress.  

 

By adding new data into the SPT liquefaction database compiled by Seed et al. (1985), 

Cetin et al. (2004) suggested the cyclic resitance ratio (CRR) curves as shown in Figure 

5.6. The CRR increases with normalized SPT blow counts (N1)60, consistent with the 

trend observed in Figure 5.2 that the CRR increases with relative density DR. The CRR 

also increases with the fines content (FC).  
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Figure 5.6  SPT liquefaction case histories and suggested cyclic resistance ratio (CRR) 
curves (Cetin et al., 2004) 

 

5.2.3  Cyclic Resistance Ratio (CRR) Based on Cone Tip Resistance qT 

Cone tip resistance qT measured by CPT soundings can be normalized with resprect to 

the overburden stress in the same way as SPT blow counts N60: 

TNT qCq ⋅=1       (5-10) 
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where 1Tq  is the value corresponding to a reference stress of one atmosphere ( atmσ ), and 

CN is the normalization factor for overburden stress.  

 

Due to the scarcity of SCPT liquefaction database, the early liquefaction criteria based on 

SCPT data were developed from the SPT liquefaction database by correlating with SPT 

N value. Figure 5.7 shows that the ratio of qc and N is a function of mean grain size (D50). 

The average relationships between qT1 and (N1)60 in SPT tests are approximately qT1 = 4 

to 5 (N1)60 for clean sands and qT1 = 3.5 to 4.5 (N1)60 for silty sands (Schmertmann, 

1978). Since the CRR based on (N1)60 has already been developed from the SPT 

liquefaction case history database, the correlation between CRR of sands and normalized 

cone tip resistance qT1 could thus be derived as shown in Figure 5.8 (Seed et al., 1983). 

The shaded areas correspond to the possible relation between CRR and stress-normalized 

cone tip resistance qT1 for both silty sands with mean grain size D50 < 0.15 mm and clean 

sands with D50 > 0.25 mm. 

 

Based on correlations between cone tip resistance qT and SPT blow count N, Robertson 

& Campanella (1985) proposed the CPT-based liquefaction potential assessment 

relationship for sands (D50 > 0.25 mm) and silty sands (D50 < 0.15 mm), as shown in 

Figure 5.9. It is verified using CPT data from Canada, Japan, China, and the USA.  

 

With a more varied database, Seed and de Alba (1986) improved values of qT1/N1 for 

sands with different mean grain sizes D50. By cross-correlating SPT and CPT data, a 
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correlation between CRR and qT1 with respect to grain diameter D50 is developed as 

shown in Figure 5.10 based on SPT liquefaction database. 

 

In order to reduce the uncertainties from the intermediate correlation between SPT blow 

counts and CPT tip resistance, Shibata & Teparaska (1988) developed a direct database 

comprising only CPT data. The derived CRRs of sands with different grain diameter D50 

are shown in Figure 5.11. 

 
 

 
 

Figure 5.7  Variation of qc/N with mean grain size (Kulhawy & Mayne, 1990) 
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Figure 5.8  Correlation between cyclic resistance ratio (CRR)7.5 for earthquake of 
moment magnitude 7.5 and normalized cone tip resistance qT1 estimated from SPT N 

value according to Seed et al. (1983) 
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Figure 5.9  Correlation between cyclic resistance ratio (CRR)7.5 for earthquake of 
moment magnitude 7.5 and normalized cone tip resistance qT1 according to  

Robertson & Campanella (1985) 
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Figure 5.10  Correlation between cyclic resistance ratio (CRR)7.5 for earthquake of 
moment magnitude 7.5 and normalized cone tip resistance qT1 according to  

Seed & de Alba (1986) 
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Figure 5.11  Correlation between cyclic resistance ratio (CRR)7.5 for earthquake of 
moment magnitude 7.5 and normalized cone tip resistance qT1  

according to Shibata & Teparaksa (1988) 
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Mitchell and Tseng (1990) calibrated a penetration resistance theory using calibration 

chamber test results for various clean sands, and then used this theory to compute field 

cone tip resistance for soil states at which liquefaction occurred in laboratory 

liquefaction. The derived correlation between CRR and cone tip resistance is also plotted 

for different grain diameter D50 in Figure 5.12 (Mitchell and Tseng, 1990). 
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Figure 5.12  Correlation between cyclic resistance ratio (CRR)7.5 for earthquake of 
moment magnitude 7.5 and normalized cone tip resistance qT1  

according to Mitchell & Tseng (1990) 
 

The concept of the state parameter (ψ ) for sands is depicted in Figure 5.13 (Been & 

Jefferies, 1985). In critical state soil mechanics, the state of soil is a function of mean 

normal stress and void ratio. The state parameter ψ  is the difference in void ratio 

between the compression line (initial state) and steady static line (failure). If the soil state 

has a position below the steady-state line (SSL), the state parameter (ψ ) is negative; 

otherwise, it is positive. By evaluating the steady-state lines for sands used in CPT 
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chamber testing, Been et al. (1985) found the correlation between the state parameter (ψ ) 

and tip resistance qT, as shown in Figure 5.14. The state parameter (ψ ) can be 

determined from qT as follows: 

)]17(032.0ln[092.0
1

1 +′
−

−=
I

IqTψ     (5-9) 

where I1 and I1’ are the first total and effective stress invariants (mean normal stress), 

( )0
0

3211 21
33

1 KI v +
′

=⎟
⎠
⎞⎜

⎝
⎛ ′+′+′=′ σ

σσσ , and the stress units are all in kPa.  

 

 
 

Figure 5.13  Definition of the state parameter ψ  (Been & Jefferies, 1985) 
 

The correlation between CRR and qT1 suggested by Seed & de Alba (1986) (Figure 5.10) 

was used by Farrar (1990) to derive the correlation between CRR and the state parameter 

(ψ ). The value of qT1 of clean sands was converted to the state parameter (ψ ) by 

λ = Slope of Steady State Line and  
       Virgin Compression Line 
ess = Void Ratio on Steady State Line 
e = Void Ratio at Initial State 
ψ = State parameter 

( )3211 3
1 σσσ ++=I  
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assuming K0 = 0.5, with typical sand unit weight and groundwater location at the ground 

surface, as shown in Figure 5.15.  The derived curve by assuming K0 = 1.0 is also plotted 

in this Figure. 

 
 

Figure 5.14  Correlations between normalized cone tip resistance and state parameter 
(Been et al., 1985) 
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Figure 5.15  Correlation between cyclic resistance ratio (CRR)7.5 for earthquake of 
moment magnitude 7.5 and state parameter according to Farrar (1990) 

 

From CPT data obtained at 47 sites in eight regions in the Hokkaido and Hyogo 

prefectures in Japan, Suzuki et al. (1995) found that boundaries separating liquefiable 

from non-liquefiable conditions at a certain level of CSR are well defined, if the test data 

are expressed in terms of stress-normalized cone tip resistance (qT1) and friction ratio 

(FR). The derived boundaries at CSR = 0.15 and CSR = 0.25 are shown in Figure 5.16. 

Based on cyclic laboratory tests and trends of CPT-predicted SPT equivalent clean sand 

blow counts, Olsen & Koester (1995) also developed the boundary contours of CRR 

based on qT1 and FR, as shown in Figure 5.17. With this approach, the soil index, such as 

D50, is not required to predict liquefaction resistance. 

 

By adding new field CPT data into the database originally developed by Shibata & 

Teparaksa (1988), Stark & Olson (1995) suggested a revised relationship between CRR 

and qT1 for sands with respect to different fines content (FC), as shown in Figure 5.18. 
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Figure 5.16  Prediction of cyclic stress ratio (CSR) based on two channels of CPT 
measurements according to Suzuki et al. (1995) 
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Figure 5.17  Prediction of cyclic stress ratio (CSR) based on two channels of CPT 
measurements according to Olsen & Koester (1995)  
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Figure 5.18  Correlation between cyclic resistance ratio (CRR)7.5 for earthquake of 
moment magnitude 7.5 and normalized cone tip resistance qT1 according to  

Stark & Olson (1998) 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200
Normalized Cone Tip Resistance, qT1

C
yc

lic
 S

tre
ss

 R
at

io
 (C

SR
)

Robertson & Wride (1998)

FC <= 5%; Ic = 1.64
FC = 15%; Ic = 2.07
FC = 35%; Ic = 2.59

Mw = 7.5

Liquefaction

No Liquefaction

 
 

Figure 5.19  Correlation between cyclic resistance ratio (CRR)7.5 for earthquake of 
moment magnitude 7.5 and normalized cone tip resistance qT1 according to Robertson & 

Wride (1998) for sands of varying fines content (FC)  
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Robertson & Wride (1998) recommended a new CRR vs. normalized tip resistance qT1 

with respect to fines content (FC) and soil behavior type index (Ic) as shown in Figure 

5.19. The tip resistance qT can be normalized to qc1N (or qT1) for effective overburden 

stress using the normalization factor given by equation (5-7). For silty sands, the stress-

normalized cone tip resistance Ncq 1  (or qT1) is further normalized to the adjusted tip 

resistance ( )csNcq 1 , which is its equivalent clean sand value. This is achieved using the 

following relationship:  

( ) NcccsNc qKq 11 =     (5-11) 

where cK  is the grain-charateristic correction factor for the apparent fines content and is 

empirically calculated from soil behavior type index Ic, as shown in Figure 5.20. For 

clean sands, ( ) NccsNc qq 11 = .  

 
 

Figure 5.20  Grain-characteristic correction factor Kc for determination of clean-sand 
equivalent cone tip resistance (Youd et al., 2001; Robertson & Wride, 1998) 
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Figure 5.21  Correlation between cyclic resistance ratio (CRR)7.5 for earthquake of 

moment magnitude 7.5 and normalized cone tip resistance qT1 according to Robertson & 
Wride (1998) for clean sand  

 

The level of ground motion (CSR) and the adjusted tip resistance ( )csNcq 1  are compared 

with the cyclic resistance ratio (CRR) to determine whether liquefaction will or will not 

occur.  The CRR for clean sand for an earthquake moment-magnitude of 7.5 is presented 

in Figure 5.21. It can also be calculated by the following equation (Robertson & Wride, 

1998; Youd et al., 2001): 

( )[ ] 08.01000/93 3
15.7 += csNcqCRR ,     if ( ) 16050 1 <≤ csNcq             (5-12 a) 

( )[ ] 05.01000/833.0 15.7 += csNcqCRR ,  if ( ) 501 <csNcq              (5-12 b) 

 

Carraro et al. (2003) developed curves of CRR versus stress-normalized cone resistance 

qT1 from a combination of analysis and laboratory testing. The CRR as a function of 

relative density was determined from cyclic triaxial tests performed on samples 

isotropically consolidated to atmospheric pressure (i.e. 1 atm = atmσ ). The stress-
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normalized cone resistance qT1 was estimated for the relative densities at which the soil 

liquefaction tests were performed, based on cavity expansion analysis. The test data and 

the derived CRR curves for clean sands and silty sands are presented in Figure 5.22. 

These appear to be quite contradictory to the CRRs curves suggested by other 

researchers, as the fines content move the CRRs to the right. This study indicates the 

liquefaction resistance decreases due to the presence of fines, perhaps because of the 

nonplastic nature of the fines added to the sand mixture, although boundary effects in 

limited chamber sizes may also have affected the results.  
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Figure 5.22  Correlation between cyclic resistance ratio (CRR)7.5 for earthquake of 
moment magnitude 7.5 and normalized cone tip resistance qT1 according to laboratory 

tests performed by Carraro et al. (2003) 
 

Since the normalization factor for effective overburden stress (CN), is limited to 

atmv σσ ′
0  less than about 5.5, Boulanger (2003) reevaluated the effect of overburden 

stress on liquefaction evaluation using a theoretical framework, and suggested 
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relationships between CRR and tip resistance qT for atmv σσ ′
0  up to 10, as shown in 

Figure 5.23. This study is useful for evaluating the liquefaction potential of foundation 

soils under high dams, which have high confining stresses due to the weight of dams. 
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Figure 5.23  Correlation among cyclic resistance ratio (CRR)7.5 for earthquake of 

moment magnitude 7.5, effective overburden stress ′
0vσ , and measured cone tip 

resistance qT (Boulanger, 2003) 
 

Figure 5.24 compares the CRR curves based on normalized tip resistance qT1, with those 

developed from CPT liquefaction case histories shown as thicker lines. The curves for 

clean sands are shown in Figure 5.24 (a), and it can be seen that they generally fall in a 

relatively narrow range. The upper boundary of the range suggested by Seed et al. (1983) 

predicts liquefaction occurrence at relatively higher CSR level than the other curves. The 

CRR curves for silty sands show more discrepancy at relatively high CSR range [Figure 

5.24 (b)], with the curve suggested by Robertson * Wride (1998) predicting liquefaction 

occurrence at the highest CSR level.   

165



0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

Normalized Cone Tip Resistance, qT1 

C
yc

lic
 S

tre
ss

 R
at

io
 (C

SR
)

No Liquefaction

Clean Sands
Mw = 7.5

S et al. (1983): D 50 >0.25mm
R & C (1985): D 50 >0.25mm
S & d (1986): D 50 =0.4mm
S & T (1990): D 50 >0.25mm
M & T (1990): D 50 =0.4mm
S & O (1995): FC < 5%
R & W (1998): FC < 5%
C et al. (2003): FC = 0%

 
(a) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

Normalized Cone Tip Resistance, qT1 

C
yc

lic
 S

tre
ss

 R
at

io
 (C

SR
) Liquefaction Silty Sands

Mw = 7.5

S et al. (1983): D 50 <0.15mm
R & C (1985): D 50 <0.15mm
S & d (1986): D 50 =0.2mm
S & T (1990): D 50 =0.2mm
M & T (1990): D 50 =0.2mm
S & O (1995): FC >= 35%
R & W (1998): FC = 35%

 
(b) 

 
Figure 5.24  Comparison of the CRR curves suggested by various researchers:  

(a) Clean sands; (b) Silty Sands. 
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5.2.4  Cyclic Resistance Ratio (CRR) Based on Shear Wave Velocity  Vs 

The CRR can also be evaluated from the shear wave velocity Vs. An approximate 

relationship between the shear wave velocity Vs and stress-normalized SPT blow count 

N1 for depths up to 15m, was suggested as following by Seed et al. (1983): 

160 NVs ≈      (5-13) 

where Vs is in m/s. With this relationship, the correlation between CRR of sandy soils 

and Vs can be derived from the CRR based on SPT liquefaction case history database, as 

shown in Figure 5.25. 
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Figure 5.25  Correlation between cyclic resistance ratio and average shear wave velocity 
Vs in top 15 m (Seed et al., 1983) 

 

Since the shear wave velocity Vs is approximately a function of the effective overburden 

stress ′
0vσ  to the power of 0.25 (Hardin & Drnevich, 1972), Robertson et al. (1992) 

suggested the following stress-normalized  form: 
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25.0

01 ⎟
⎠
⎞⎜

⎝
⎛ ′= vss VV σ      (5-14) 

where sV  is in m/s and ′
0vσ  in atm. 

 

Based on Vs measurement and liquefaction observation in the Imperial Valley of 

California during the 1987 Superstition Hill earthquake (M = 6.6), Robertson et al. 

(1992) proposed a correlation between stress-normalized shear wave velocity (Vs1) and 

the CRR, as shown in Figure 5.26. Also based on liquefaction case histories, CRR curves 

were proposed by Kayen et al. (1992) and Lodge (1994) (Figure 5.27). Compared with 

these two relationships, the one developed by Robertson et al. (1992) is the least 

conservative. 
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Figure 5.26  Correlation between cyclic resistance ratio (CRR)7.5 for earthquake of 
moment magnitude 7.5 and normalized shear wave velocity Vs1  

according to Robertson et al. (1992) 
 

168



Based on case history data of measured Vs from 26 earthquakes and more than 70 

measurement sites, Andrus & Stokoe (2000) established CRR curves based on Vs in soils 

ranging from fine sand to sandy gravels with cobbles. The CRR for an earthquake 

moment-magnitude of 7.5 is found from (Andrus & Stokoe, 2000; Youd et al., 2001): 

( ) ( )[ ]csScss VVVbVaCRR 111
2

15.7 11100 −−+=   (5-15) 

where a = 0.03, b = 0.9, 1sV  is the overburden stress-normalized  shear-wave velocity, 

and csV 1  is a limiting asymptote value. From statistical database analyses, Andrus & 

Stokoe (2000) determined the following values for sands and gravels related to fines 

contents: 2201 =csV  m/s for FC ≤ 5%; 2101 =csV  m/s for FC = 20%; and 2001 =csV  m/s 

for FC ≥ 35%. The suggested CRR curves for soil with different fines content (FC) are 

shown in Figure 5.28. 
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Figure 5.27  Correlation between cyclic resistance ratio (CRR)7.0 for earthquake of 
moment magnitude 7.0 and normalized shear wave velocity Vs1 according to  

Kayen et al. (1992) and Lodge (1994) 
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Figure 5.28  Correlation between cyclic resistance ratio and normalized shear wave 
velocity, Vs1 (Andrus & Stokoe, 2000) 

 

Note: 
25.0

01 )( ′= vss VV σ , where sV  is in m/s and  
′

0vσ  is the effective overburden stress in atm. 
 

From the cone tip resistance qT and shear wave velocity Vs, most of the correlations only 

give the value of CRR7.5, which represents the liquefaction resistance in the event of 

earthquake of moment magnitude Mw = 7.5. For earthquake of magnitude other than 7.5, 

Seed and Idriss (1982) introduced correction factors termed ‘‘magnitude scaling factors 

(MSFs)’’. The MSFs are traditionally applied to CRR. Figure 5.29 presents a summary of 

different MSFs developed by various researchers. The NCEER workships (Youd et al., 

2001) suggested that for earthquakes of magnitudes <7.5, the range of MSFs falls in the 

170



shaded area in Figure 5.29, while the MSFs recommended by Idriss should be used for 

earthquakes of magnitudes >7.5. 

 

 

Figure 5.29  Magnitude scaling factors (MSF) derived by various researchers  
(Youd et al., 2001) 

 

5.2.5  Probabilistic Cyclic Resistance Ratio (CRR) 

All the aforementioned methods to evaluate CRR are conventional deterministic 

approaches, which give only a binary evaluation of liquefaction potential.  To assess the 

degree of liquefaction severity, calculated factor of safety (Fs) can be defined as Fs = 

CRR/CSR for a particular earthquake magnitude and set of data. A calculated FS = 1 

corresponds to “initial liquefaction” whereas FS = 0.5 indicates severe quick sand.  

 

In more recent evaluations, CRR curves of different probabilities of occurrence have 

been developed from the original databases. Based on the SPT liquefaction database from 
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which the deterministic CRR curves were developed, probabilistic curves for CRR have 

been proposed by Liao et al. (1988), Liao (1996), Youd & Noble, 1997, and Cetin et al. 

(2004). The probabilistic CRR curves suggested by Cetin et al. (2004) are shown in 

Figure 5.30.  
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Figure 5.30  SPT liquefaction case histories and suggested probabilistic cyclic resistance 
ratio (CRR) curves (Cetin et al., 2004) 
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Based on stress-normalized cone tip resistance qT1, a mapping function was proposed 

(Chen & Juang, 2000; Juang & Jiang, 2000) to relate the safety factor Fs to the 

liquefaction probability PL based on a database of 225 CPT-based cases compiled by 

Juang & Jiang (2000): 

( )[ ]34.30.111 sL FP +=     (5-16) 

Based on the shear wave velocity, there is a similar mapping function (Juang et al., 

2001): 

( )[ ]1.372.011 sL FP +=     (5-17) 

Curves of CRR for different probabilities of liquefaction based on stress-normalized tip 

resistance qT1 are presented in Figure 5.31. This provides a more rational means of 

assessing the likelihood of liquefaction for a particular CSR and soil resistance measured 

by the stress-normalized tip resistance qT1. The CRR curves at different probabilities 

ranging from 10% to 90% are given in Figure 5.32 for stress-normalized shear wave 

velocity 1sV .  
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Figure 5.31  Cyclic resistance ratios (CRRs) for clean sands based on tip resistance at 

different levels of probability (Juang & Jiang, 2000) 
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Figure 5.32  Cyclic resistance ratios (CRRs) for clean sands based on shear wave 

velocity at different levels of probability (Juang et al., 2001) 
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5.3  Energy-based Procedures 

Numerous energy-based procedures have been proposed for liquefaction evaluation (e.g. 

Davis & Berrill, 1982; Law et al., 1990; Liang et al., 1995; Kayen & Mitchell, 1997). In 

these approaches, the seismic loading is quantified with the energy released during 

earthquakes, and it is compared with the threshold loading of soil liquefaction in terms of 

energy. 

 

Some of the procedures use the Gutenberg-Richter energy correlation as the basis to 

estimate the seismic loading imparted to the soil. The energy relation is given as 

following (Gutenberg & Richter, 1956): 

8.15.1
0 10 += ME      (5-18) 

where E0 is the total radiated energy from the earthquake source (kJ), and M is the 

magnitude of earthquake in Richter scale. With different assumptions on energy 

dissipation, expressions to derive seismic loading are suggested by Davis & Berrill 

(1982), Berrill & Davis (1985), Law et al. (1990), and Trifunac (1995). Based on the SPT 

liquefaction database from earthquake case histories, the same researchers proposed the 

boundary curves, which separate the liquefied and non-liquefied cases, with respect to the 

stress-normalized SPT blow counts, N1. 

 

In contrast with these studies, Kayen & Mitchell (1997) uses Arias intensity (Ih) to 

measure the earthquake shaking intensity quantitatively. Arias intensity represents the 

total energy per unit weight in a given direction that is absorbed by an idealized set of 

single degree of freedom oscillators (Arias, 1970). Arias intensity (Ih) is calculated by 
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integrating the acceleration time histories, and is the sum of Arias intensity in the x- (Ixx) 

and y- (Iyy) directions: 

( ) ( )dtta
t

g
dtta

t
g

III yxyyxxh
2020

0202 ∫∫ +=+=
ππ   (5-19) 

where Ih is the Arias intensity of the earthquake motion at the top of the soil profile (m/s), 

( )tax  and ( )tay  are the horizontal acceleration time histories in the x- and y-direction 

(m/s2), t0 is the acceleration due to gravity (m/s2), and g is the acceleration due to gravity 

(m/s2). 

 

Similar to the stress-based procedure, the Arias intensity typically decreases with depth. 

A depth correction factor, rb, analogous to rd used in the stress-based procedure is 

necessary to relate the Arias intensity of surface motions to that at depth in a profile: 

bhhb rII ⋅=       (5-20) 

where Ihb is the Arias intensity of the earthquake motions at a given depth in the profile. 

Based on analysis of synthetic seismograms propagated through soil profiles using the 

SHAKE 1-D equivalent linear program, Kayen & Mitchell (1997) gave the average and 

standard deviation of the value of rb. The average value of rb can be calculated from the 

following equations: 

rb = 1.0 – 0.07z  when z ≤ 6 m            (5-21 a) 

rb = 0.76 – 0.03z  when 6 m ≤ z ≤ 10 m            (5-21 b) 

rb = 0.46   when z > 10 m             (5-21 c) 

where z is in meters.  
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Based on SPT liquefaction case histories, the boundary curve expressed in terms of Arias 

intensity (Ihb) with respect to SPT N value normalized to effective overburden stress of 1 

atmosphere [(N1)60] was developed as reasonable separation of the data sets, as shown in 

Figure 5.33 (Kayen & Mitchell, 1997).  

 

 

Figure 5.33  Arias intensity liquefaction field data and boundary curves suggested by 
Kayen & Mitchell (1997) based on SPT N value 

 

Similarly, Figure 5.34 presents the boundary curves expressed in terms of Arias intensity 

(Ihb) with respect to normalized cone tip resistance (qT1), based on 28 field case histories 

where strong ground motion data were available (Kayen & Mitchell, 1997). Considering 

the number of field case histories is limited, this approach is considered quite 
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approximate (Schneider, 1999). Therefore, the stress-based approach is used for 

liquefaction evaluation in this thesis. 
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Figure 5.34  Arias intensity liquefaction field data and boundary curves suggested by 

Kayen & Mitchell (1997) based on CPT tip resistance 
 

5.4  Summary 

 A review of liquefaction evaluation methods based on SPT N value and SCPTu data is 

performed herein, with emphasis on the stress-based approaches. In stress-based 

approaches, deterministic and/or probabilistic curves can be used with the stress-

normalized tip resistance qT1 (or Ncq 1 ) and normalized shear wave velocity 1sV  in 

evaluating the CRR. Comparison of CRR curves developed by various researchers shows 

that those for clean sands agree relatively well, but significant discrepancy exists for silty 

sands. The CRRs are generally found to increase with fines content, but lab tests 
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performed by Carraro et al. (2003) showed CRRs decreases with fines content, probably 

due to the nonplastic nature of the added fines. As to the energy-based approach, the 

CRR based on Arias intensity is discussed. Due to the limited case histories for 

developing this approach, the Arias intensity approach is considered to be quite 

approximate.  
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CHAPTER VI 
 
 

LIQUEFACTION EVALUATION BY SCPTU SOUNDINGS  
IN NMSZ 

 
 
6.1  Outline 

The Mississippi embayment is the key geologic feature that overlies the New Madrid 

Seismic Zone (NMSZ). The embayment is a deep soil-filled syncline or a trough-like 

depression that plunges southward along the course of Mississippi River, extending 

from southern Illinois to the Gulf of Mexico, as shown in Figure 6.1 (a).  Paleozoic 

rock forms the bedrock floor of the Mississippi embayment and the thickness of its 

upper sediments varies from a few meters at the southern tip of Illinois to more than 

1000 m in Arkansas and Tennessee near Memphis, as shown in Figure 6.1 (b). The 

soil sediments consist of layers of clay, silt, sand, gravel, chalk, and lignite ranging in 

age from Cretaceous at lower depths to recent Holocene at shallow depths. The 

uppermost surficial soils consist primarily of clean to slightly silty sands with 

occasional to frequent silty clay layers. Figure 6.2 illustrates by color shading the 

thickness of the sediments synthesized from well-logging and reflection profiles. The 

Mississippi embayment continues south into Mississippi, and the sediment thickness 

here increases to 1600 m. Such deep soil columns are much greater than typical 

overburden profiles found in the well-known seismic regions of California and 

Alaska.  

 

During earthquakes, shear waves from the underlying rock propagate upward through 

the soil column. The magnitude of ground shaking can be represented by the 

maximum acceleration (amax), or peak ground acceleration (PGA), and is required 
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input for a liquefaction evaluation of a particular site based on in-situ tests. The value 

of maxa  can be estimated from empirical correlations with earthquake magnitude, 

distance from the seismic energy source, and local site conditions. By estimating the 

PGA (or maxa ) from empirical correlations, the cyclic stress ratio (CSR) can be 

inferred from the simplified procedure outlined in Chapter 5 using equation (5-6).  

 

 

 
 
Figure 6.1  The Mississippi embayment: a) Plan view of the Mississippi embayment;  

b) E-W section through Memphis (Ng et al., 1989; Hashash & Park, 2001). 
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Figure 6.2  The thickness of the Mississippi Embayment sediments from log wells 
and reflection profiles shown by color shading 

(http://www.ceri.memphis.edu/usgs/model/sedthick.shtml) 
 

However, the local site effects can significantly affect the site response during 

earthquake shaking. The level of excitation at the ground surface can be less than, 

equal to, or greater than that at the rock depth, depending upon the specific soil 

stiffness, damping, layering, and local site effects. The local geologic and soil 

conditions have been found to influence the intensity of ground motion significantly. 

For example, ground motions were recorded at six stations along a 6.4-km section in 

San Francisco during a nearby earthquake of moment magnitude Mw ≈  5.3 in 1957 

(Idriss & Seed, 1968). The stations were located close to each other, but the recorded 

peak ground acceleration (PGA) varied from 0.05g to 0.12g due to the variation of 

thickness of the underlying soil columns (Idriss & Seed, 1968). Similar local site 
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effects have also been observed during many other earthquakes, such as the 1985 

Michoacan earthquake in Mexico (Stone et al., 1987) and the 1989 Loma Prieta 

earthquake in California (Seed et al., 1990).  

 

Based on a statistical study on 147 sets of earthquake-induced ground motions 

recorded at sites underlain by different types of soil profiles, Seed et al. (1976) 

suggested the generalized PGA attenuation relationships for sites of rock, stiff soils, 

and deep cohesionless soils (Figure 6.3). The overall trends suggest that the PGA at 

sites of both stiff soils and cohesionless soils are greater than on rock when peak 

accelerations are small (amax < 0.1 g), and are smaller at higher acceleration levels 

(amax < 0.1 g). Idriss (1990) developed generalized PGA relationships for soft soil 

sites (Figure 6.4) based on data from Mexico City and the San Francisco Bay area, as 

well as on site response analysis. Soft sites are more likely to amplify the peak 

acceleration above the input bedrock motion at low acceleration levels (arock < 0.4 g), 

and the amplification decreases with acceleration level on bedrock. For arock > 0.4 g, 

the PGA is lower than the acceleration level on bedrock.  

 

The empirical peak acceleration attenuation relationships aforementioned are almost 

exclusively developed from earthquakes outside of the NMSZ. Due to the deep soil 

deposit feature and the long recurrence period of major earthquakes in the NMSZ, the 

recordings of strong ground motions are not available for developing its own 

empirical attenuation relations. Boore & Joyner (1991) constructed a generic deep-

soil column for deep soil sites in eastern North America, by averaging the shear wave 

velocities compiled from a number of deep soil sites and assigning the damping ratio 

to the layers that are reasonably consistent with those inferred in the Mississippi 
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embayment. Accounting for the effect of this generic deep-soil column, a stochastic 

model was used to estimate motions at deep soil sites for a number of distances and 

magnitudes. Then, the following equation was derived from these motions to estimate 

the PGA or amax:  

( ) ( ) ( ) RRMMMa www 0022.0log6016.06037.06448.0663.3)log( 32
max −−−−−−−+=  (6-

1) 

where amax in cm/s2, R is the hypocentral distance (km) or distance from the site to the 

hypocenter, and Mw is the moment magnitude of the earthquake. This relationship can 

represent the average soil conditions in the Mississippi Embayment for moment 

magnitudes ranging from 5 to 8.5 and distances R from 10 to 400 km (Boore & 

Joyner, 1991). Alternatively, the PGA can be estimated from the NEHERP maps of 

earthquake ground motion for an earthquake of a certain magnitude.  

 

 
 

Figure 6.3  Relationship between peak accelerations at rock outcrop and soil sites 
based on 147 sets of earthquake-induced ground motions (Seed et al., 1976) 
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Figure 6.4  Relationship between peak accelerations on rock and soft soil sites based 
on data from Mexico city and the San Francisco Bay area, as well as on site response 

analysis (Idriss, 1990) 
 

With equation (6-1), the PGA can be estimated for sites in NMSZ for certain 

earthquakes, and then the cyclic stress ratio (CSR) can be calculated using the 

simplified procedure. It provides an approximate solution for the seismic loading. 

Since this procedure does not account for local site effects, the result can be different 

from reality. In this situation, site response analysis is commonly used to account for 

local site effects and to determine the response of the soil deposit to the motion of the 

bedrock immediately beneath it. Figure 6.5 illustrates the procedure for liquefaction 

evaluation based on SCPTu soundings and site response analysis. The bedrock motion 

resulted from an earthquake is generated numerically, and then the propagation of the 

ground motion from the bedrock to the ground surface is simulated by software 

conducting site response analysis. The cyclic stress ratio (CSR) can thus be obtained 

and compared with the cyclic resistance ratio (CRR) that can be derived from SCPTu 

soundings. In this thesis, site response analysis is applied to the paleoliquefaction sites 
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in the NMSZ for liquefaction evaluation. Base on the results, regional criteria of 

liquefaction evaluation based on SCPTu data are developed for the NMSZ. 
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Figure 6.5  Liquefaction evaluation based on SCPTu soundings and  
site response analysis 

 

6.2  Evaluation of Cyclic Stress Ratio by Site Response Analysis 

One-dimensional (1D) analysis is commonly employed for site response analysis. It 

assumes that all soil layers are horizontal and that the response is predominantly 

caused by shear waves propagating vertically upward from the underlying bedrock.  

 

The bedrock motion is generated by seismic hazard analysis using the program 

SMSIM developed by Boore (2002). This program uses a stochastic approach to 

generate synthetic bedrock motion, given the earthquake magnitude and source-to-site 

distance. In this thesis, the ground motion relations proposed by Atkinson & Boore 
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(1995) for eastern North America are chosen as input source and path model for the 

SMSIM program.  

 

The 1D equation of motion for vertically propagating shear waves through an 

unbounded medium can be written as: 

tz
u

z
uG

t
u

∂∂
∂

+
∂
∂

=
∂
∂

2

3

2

2

2

2

ηρ     (6-2)  

where ρ  = density, u  = displacement, z = depth below the ground surface, G = shear 

modulus, t = time, and η  = viscosity. 

 

In site response analysis, there are two main numerical methods for solving different 

equation (6-2): (1) equivalent linear analysis method solved in frequency domain, and 

(2) nonlinear analysis performed in time domain. The equivalent linear approach to 

one-dimensional ground response analysis has been implemented in computer 

programs such as SHAKE (Schnabel et al., 1972) and RASCALS (Silva, 1992). 

Newer versions of SHAKE are available as EDUSHAKE (http://www.proshake.com) 

and SHAKE2000 (http://www.shake2000.com). Although the equivalent linear 

analysis is computationally simple, it is essentially an approximation to the actual 

nonlinear process of seismic ground response. Nonlinear analysis, on the other hand, 

uses direct numerical integration in the time domain and can more accurately simulate 

the nonlinear behavior of soils. Table 6.1 lists some of the most commonly-used 

computer programs for nonlinear one-dimensional ground response analysis.  
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Table 6.1  Computer programs for nonlinear one-dimensional ground response 
analysis (after Kramer, 1996; Luna, 2004) 

 
Program Soil Model Method Stress Reference 

CHARSOIL Ramberg-Osgood Characteristics Total Streeter et al. (1973) 
MASH Martin-Davidenkov Finite Element Effective Martin and Seed (1978) 

DESRA-2 Hyperbolic Finite Element Effective Lee and Finn (1978) 
TESS1 HDCP (Hardin-Drnevich-

Cundall-Pyke) 
Finite Element Effective Pyke (1985) 

DYNA1D Nested yield surface Finite Element Effective Prevost (1989) 
SUMDES Hypoplasticity Finite Element Effective Li et al. (1992) 
D-MOD M-K-Z (Matasovic, 

Konder, and Zelasko) 
Finite Element Effective Matasovic (1993) 

DESRAMOD2 Hyperbolic Finite Element Effective Vucetic (1998) 
DESRA-
MUSC 

Hyperbolic Finite Element Effective Qiu (1998) 

DEEPSOIL Modified Hyperbole Finite Element Effective Park & Hashash (2004) 
 

A new 1D nonlinear time domain site response analysis model (DEEPSOIL) has been 

developed by Park (2003) and Park & Hashash (2004). This model incorporates 

several improvements over conventional 1D nonlinear time-domain analysis. 

 

In time domain analysis, the wave propagation equation (6-2) can be written as: 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } guIMuKuCuM &&&&& −=++     (6-3) 

where [M] = mass matrix; [C] = viscous damping matrix; [K] = stiffness matrix; { }u&&  = 

vector of nodal relative acceleration; { }u&  = vector of nodal relative velocities; { }u = 

vector of nodal relative displacements, gu&& = acceleration at the base of the soil 

column, and { }I  is the unit vector.  

 

The viscous damping matrix [C] represents damping at very small strains where many 

soil models are primarily linear, and it is assumed to be proportional to the mass and 

stiffness matrices:  

[ ] [ ] [ ]KaMaC 10 +=      (6-4) 
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where a0 and a1 are scalar values. In traditional analyses, viscous damping is supposed 

to be frequency independent. However, in time domain analysis, the ground motion is 

not decomposed to a sum of harmonic components, and it is impossible to make the 

viscous damping frequency independent.  

 

Park and Hashash (2004) suggests that scalar values a0 and a1 can be computed as 

following, assuming the damping ratio is constant throughout the soil profile:  
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where m and n are two significant natural modes, fm and fn are the corresponding 

natural frequency values, and mζ  and nζ  are the corresponding damping ratios. 

Equation (6-5) results in equal damping ratios at the two selected modes. In order to 

specify more than two frequencies/modes, equation (6-4) can be extended as 

following: 

[ ] [ ] [ ] [ ][ ]∑
−

=

−=
1

0

1
N

b

b

b KMaMC     (6-6) 

where N is the number of frequencies/modes incorporated. Assuming a constant 

damping ratio throughout the soil profile, the scalar value of ab  is define as follows: 
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n fa

f
π

π
ζ     (6-7) 

The viscous damping formulation in equation (6-5) reduces the artificial damping 

introduced numerically through uncontrolled frequency-dependent viscous damping 

(Park and Hashash, 2004).  
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DEEPSOIL also incorporates a confining stress-dependent nonlinear soil model. It is 

based on the modified hyperbolic model developed by Matasovic and Vucetic (1995): 
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where τ = shear stress; γ = shear strain; Gmax = initial shear modulus; moτ = shear 

stress at approximately 1% shear strain; maxGmor τγ = is the reference shear strain; 

and β  and s are two parameters to adjust the shape of the backbone curve to 

represent a wider range of measured soil behavior. In order to allow coupling between 

confining stress and shear stress, Park and Hashash (2004) proposed the following 

stress-dependent reference strain: 
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γ      (6-9) 

where a and b are curve fitting parameters, ′
voσ  is effective vertical stress, and refσ  is 

a reference confining stress. Park and Hashash (2004) also suggested the following 

equation to describe the dependency of zero strain equivalent damping ratio on 

confining pressure: 

d

vo

c

⎟
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⎝
⎛ ′

=
σ

ξ      (6-10) 

where c and d are material parameters and ′
voσ  is the effective vertical stress.  

 

The influence of confining stress (or effective mean principal stress) is very important 

on cyclic behavior of soils for deep soil sites, but it has been generally neglected in 

most site response analysis studies, because many sites have relatively shallow depths 
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to bedrock (Park, 2003). With the confining stress dependent nonlinear soil model, 

DEEPSOIL can more accurately predict the ground motions, particularly in NMSZ 

where the soil column extends to depths of 1000 m or more.  

 

The 1D nonlinear time domain site response analysis model (DEEPSOIL) is 

implemented in a program also called DEEPSOIL (Park, 2003). It inputs the bedrock 

motion and soil properties, such as shear wave velocity, unit weight, shear modulus 

degradation curves and damping curves, and it outputs the time-history of ground 

motion, shear stress, and shear strain for each soil layer. Compared with the simplified 

procedure, in which the cyclic stress ratio (CSR) is approximately assessed from the 

estimated maximum ground surface acceleration, the computed time-history of shear 

stress is more appropriate for the liquefaction evaluation. It takes account of the local 

site effects and nonlinearity properties of soils, and includes information on both the 

amplitude and duration of the ground shaking. It is a fact that the cyclic shear stress 

for liquefaction evaluation is addressed as the CSR, which is the ratio of the average 

equivalent uniform shear stress avτ  to the overburden stress ′
voσ . With seismic 

response analysis (i.e. DEEPSOIL), the CSR can be derived directly from equation 

(5-4) without the assumption of rigid soil column that exists in the simplified 

procedure. Thus the stress reduction coefficient rd is not needed to account for the 

flexibility of the soil column, reducing the uncertainty of the liquefaction analysis 

results. 
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6.3  Shear Modulus in Mississippi Embayment 

Nonlinear seismic response analysis by DEEPSOIL requires the input of dynamic soil 

properties for each layer, including shear wave velocity (Vs), shear modulus reduction 

curve (G/Gmax), and damping ratio (ζ ).  

 

Based on geologic age of near-surface deposits, Romero et al. (2001) classified the 

Mississippi embayment into two broad categories as shown by Figure 6.6: (1) 

Holocene-age deposits (called Lowlands) that are located along the floodplains of the 

Mississippi River and its tributaries; (2) Pleistocene-age deposits (called Uplands) that 

are found in the interfluve terrace regions. By aggregating and synthesizing various 

near-surface Vs profiles in this region, generic shear wave velocity profiles for the two 

geologic categories were developed up to a depth of 70 m, as shown in Figure 6.7 (a). 

The Lowlands profile shows lower shear wave velocity than the Uplands profile, for 

the Holocene-age deposits were found to be loose in the alluvial plains. The generic 

Vs profile for deep soils extending from 70 m to 1000 m [Figure 6.7 (b)] is developed 

from Vs estimated from various models, which relate the depth of soil to Vs by 

assuming Vs is a certain function of depth z (i.e. Vs = f(z)) (Romero, 2001). 

 

Recent explorations in the Mississippi Embayment provided measured Vs profiles of 

deep soil sites, which locations are shown in Figure 6.8. An exploratory well for 

hydrocarbons was drilled at Keiser located in northeast Arkansas, and went to a final 

depth of 887.4 m before meeting hard limestone. Upon completion of the well, 

geophysical logging was performed. Based on the measured velocity of P-wave, also 

known as compression wave, Rix (2004) inferred the Vs profile as shown in Figure 

6.9 (a). The logs in the top 75.7m were not used, because they were affected by the 
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presence of the surface steel casing. Also plotted on Figure 6.9 (a) is a set of shear 

wave velocity Vs and compression wave velocity Vp profiles directly measured by 

downhole logging during advancement of a water well in Memphis, TN. The logs go 

from 15.8 m to a depth of 425.2 m. The wave velocities in Figure 6.9 (a) show 

unrealistic fluctuations, which are probably resulted from measurement errors. The 

technique of moving averages is applied to the data, and the average value of wave 

velocities at depth intervals of 5 m is assumed to be their approximate value at the 

corresponding median depth. The wave velocities smoothed with moving average are 

presented in Figure 6.9 (b). 

 

 
 

Figure 6.6  Age of near-surface geologic deposits in the Mississippi embayment 
(Romero, 2001) 
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An approximate Vs profile can be created for the deep soil sites in the NMSZ. The Vs 

in the top 30 m can be obtained from the SCPTu test, and those between the depth of 

30 m and 425.2 m are the real Vs data collected by downhole logging in Memphis, 

TN. While those below 425.2m are the Vs inferred from the P wave velocity from 

downhole logging at Wilson Well, Keiser, AR. Figure 6.10 compares the composite 

of measured suspension-type Vs from downhole logging and the generic Vs values 

suggested by Rix & Romero (2001). From this figure, it can be seen that the measured 

Vs follows the general trend of the generic Vs profile. 
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Figure 6.7  Generic shear wave velocity profiles and simplified stratigraphy of 
Mississippi embayment: a) up to 70m; b) up to 1000m (Romero, 2001) 

 

194



km

Exploration Well

Water Well

km

Exploration Well

Water Well

 

Figure 6.8  Map showing the recent locations where deep shear wave velocity Vs and 
compression wave velocity Vp profiles were acquired 

 

For a specific site, the Vs in the top 30 m can be accurately measured in a downhole 

manner by a SCPT test. In fact, this shallow depth is of paramount significance to 

seismic evaluation. The 2000 IBC (International Building Code) emphasizes the 

importance of the average Vs in the top 30.5 m (100 ft) by using it to define sites with 

respect to their seismic vulnerability, as listed in Table 6.2. The measured Vs 

classifies the sites into different categories, which has significant impact on design of 
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structures. Accurate measurement of Vs can ensure the correct design for seismic 

safety, as well as justify the economic cost. 
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Figure 6.9  Shear wave velocity and compression wave velocity from Keiser, AR and 

Memphis, TN: (a) Unsmoothed wave velocities; (b) Smoothed wave velocities 
 

Table 6.2  Site class definitions by average shear wave velocities (IBC, 2000) 

Site Class Soil Profile Name Average shear wave velocity 
sV  (m/s) in top 30.5 m 

A Hard rock 
sV  > 1524 m/s 

B Rock 762 m/s < sV  ≤ 1524 m/s 
C Very dense soil and soft rock 366 m/s < 

sV  ≤ 762 m/s 
D Stiff soil profile 182 m/s < 

sV  ≤ 366 m/s 
E Soft soil profile 

sV  < 182 m/s 
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Figure 6.10  Composite of measured suspension-type shear wave velocity from 
downhole logging in comparison with the generic shear wave velocity developed by 

Rix & Romero (2001) for the Mississippi Embayment 
 

For detailed site amplification analysis, the composite Vs profile shown in Figure 6.10 

can be input into the program DEEPSOIL. The composite Vs profile combines the 

shallow near-surface Vs measured by SCPT (i.e., upper 30 m), the Vs profile from S-

wave logging measured in Memphis, TN to 425 m, and the inferred Vs values for 

depths up to 900 m from P-wave velocity logging at the Arkansas site. With shear 

wave velocity Vs and the saturated unit mass density Tρ , the small-strain shear 

modulus Gmax can be derived ( 2
max sTVG ρ= ), as discussed in Chapter 4.  
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The small strain stiffness (Gmax) is a reference benchmark and needs to be reduced 

with higher levels of strain. The Electric Power Research Institute (EPRI, 1993) 

developed generic depth-dependent modulus reduction (G/Gmax) and damping (D) 

curves for the deep soil sediments of the Mississippi embayment, as shown in Figure 

6.11. They are based on results of resonant column/torsional shear and large-scale 

triaxial chamber laboratory tests, as well as literature review of available dynamic 

curves. Park (2003) simulated the EPRI dynamic curves by set value to the material 

parameters as shown listed in Table 6.3. The simulated curves are compared with 

EPRI curves in Figure 6.11, which shows a relatively good match.  

 

Table 6.3  Value of material parameters used in the simulated dynamic curves  

(after Park, 2003) 
Parameters β  s 

refσ  a b c d 

Value 0.7 0.8 0.18 MPa 0.05 0.4 Chosen to match small strain 
damping of EPRI curves 

0.0 
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Figure 6.11  Comparison of modulus degradation and damping curves suggested by 
EPRI (1993) and those developed to match EPRI curves (Park, 2003) 

 

 

 

 

 

 

 

199



6.4  Scenario Earthquakes for Strong Ground Motion in NMSZ 

In order to develop seismic hazard maps for Memphis, Shelby County, Tennessee, 

Cramer et al. (2004) assumed two scenario earthquakes for median ground motions. 

The first one is a Mw = 7.7 earthquake on the southwesterly trend line of seismicity of 

the NMSZ (Figure A.1 in Appendix A). The second is a Mw = 6.2 earthquake at 

Marked Tree, Arkansas at the southern end of the southwest-trending arm of 

seismicity of the NMSZ.  

 

Site investigation have given well-constrained age estimates for a number of 

liquefaction features associated with previous earthquakes in the NMSZ. Tuttle 

(1999) has summarized these results from paleoliquefaction sites in a chronology 

shown in Figure 6.12. Findings from the chronology indicated that besides the 1811-

1812 earthquakes, major earthquakes also occurred around 1530, 900, and 490. The 

liquefaction fields attributed to the 1811-1812 A.D., 1530 A.D., and 900 A.D. events, 

were interpreted, as shown in Figure 6.13 (Tuttle, 1999). The corresponding estimated 

earthquake magnitudes are also shown in the figure. The spatial distributions of 

liquefaction features that formed during these earthquake events are represented as the 

zones enclosed by the ellipses shown in the figure. The liquefied areas during 1530 

A.D. and 900 A.D. earthquakes are similar to those that formed during 1811-1812 

A.D. (Tuttle, 1999), showing a pattern consisting two to three major earthquake 

events.  

 

Assuming the epicenters of the earthquakes are at the center of the ellipses, the 

epicenters corresponding to the 1530 A.D. and 900 A.D. earthquakes are plotted in 

Figure 6.14. As can be seen from this figure, the epicenters can be clustered into two 
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groups, which are located in the two areas enclosed in the two ellipses plotted on the 

figure, respectively. The area in the north has four epicenters with the corresponding 

earthquake magnitudes ranging from 7.8 to 8.0, and the area in the south has three 

epicenters corresponding to two magnitude 7.6 earthquakes and one magnitude 8.1 

earthquake.  

 

 
 

Figure 6.12  Chronology for the liquefaction features found at sites in the New 
Madrid region (Tuttle, 1999) 
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Figure 6.14  Estimated epicenters of earthquakes in 1811-1812, 1530, and 900 
 

This leads to the thought that the major earthquake events followed similar patterns with 

regard to the magnitude, epicenter, and liquefaction fields. It is reasonable to surmise that 

the major earthquakes in the future might follow the same pattern too. Therefore, two 

scenario earthquakes can be assumed for strong ground motion. Their epicenters are 

located in the center of the two areas enclosed by the ellipse shown in Figure 6.14, and 

their moment magnitude can be assumed as 8.0. 
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6.5  Liquefaction Evaluation for Paleoliquefaction Sites in NMSZ 

Sites of the liquefaction features caused by previous major earthquakes have been 

identified in the NMSZ, and the magnitude and epicenters of the corresponding 

earthquake events have been estimated by paleoliquefaction studies (e.g. Tuttle, 1999). 

Curiosity warrants a look at the liquefaction analysis results for these paleoliquefaction 

sites, in the event of the same earthquake events that caused liquefaction hundreds of 

years ago. 

 

6.5.1  Liquefaction Evaluation at Walker Site of Marked Tree, AR 

A series of CPT tests was performed at the Walker paleoliquefaction site that is located 

near Marked Tree, AR. Figure 6.15 presents a vicinity map showing the location of this 

site. A notable feature of the Walker site is its well-preserved Indian Mound, as shown in 

Figure 6.16. This site was selected for a paleoseismology study because sand blows were 

found in association with a Native American occupation horizon, suggesting that the sand 

blow was prehistoric in age (Tuttle et al., 2000). The study included a large scale surface 

resistivity survey to locate anomalies indicating the exact location of the feeder dikes 

(Wolf et al., 1996; Barnes, 2000).  

 

From the contour plot of the resistivity data from the west side of the Indian mound 

(Figure 6.17), a northwest-southeast trending anomaly with high resistivity (green) can be 

seen, reflecting a sudden lateral change in sediment composition. The high gradient of 

resistivity values indicates sand, which is of high resistivity, had been injected into 
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overlying clay or finer-graned deposits, which is of low resistivity. Similarly, Figure 6.18 

shows the contour plot for the south side of the Indian Mound, isolated areas of high 

resistivity suggest the existence of liquefaction features. After the orientation of the sand 

dikes and related sand blow were defined by geophysical survey, the sand dikes were 

trenched to examine stratigraphic relations and to document the liquefaction features and 

the cultural horizon (Tuttle, 1999). The locations of the two trenches are shown as white 

rectangles in Figure 6.17 and 6.18. Both trenches are approximately 5 m in length and 1 

m in width. Excavation trench 1 is orientated across the northwest-southeast trending 

geophysical anomaly to the west of the Indian Mound. The exposed portion of a sand 

blow and its associated sand dike are shown in Figure 6.19. The fine- to medium-grained 

sand dike crosscuts mud and sandy mud layers containing pottery shreds, charcoal, and 

deer bones. Based on radiocarbon dating of charcoal sample C2 found in the sandy mud 

layer below the sand blow, the liquefaction features were formed after A.D. 1420.  

Excavation trench 2 located to the south of the Indian Mound is oriented across the 

northwest-southeast trending geophysical anomaly seen in the resistivity contour plot 

(Figure 6.18). It intersected two fine- to medium-grained sandy dikes and a portion of 

their associated sand blow, as shown in Figure 6.37. Similar to those exposed in 

excavation trench 1, the sand dikes crosscut the top layers, and sand blow material has 

been deposited on top of the sandy mud and muddy fine sand layers. Radiocarbon dating 

of charcoals C2 and C3 provided calibrated dates of 1530 A.D.-1550 and A.D. 530-660, 

respectively.  The similarity of the sand dikes exposed in excavation trenches 1 and 2 

suggests the liquefaction features formed during the same event.  On the basis of 

radiocarbon dating and artifact analysis, the sand blows and related dikes are thought to 
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have formed during a large New Madrid earthquake circa 1530 A.D. (Tuttle et al., 2000; 

Barnes, 2000).  

 

At a later date (Aug. 2000), CPT testing was performed in two linear arrays perpendicular 

to the main direction of the sand dikes, as shown by Figure 6.16. The 14 soundings 

include 2 seismic cone penetration tests with u2 measurement (SCPTu2), 8 cone 

penetration tests with u2 measurement (CPTu2), and 4 cone penetration tests with u1 

measurement (CPTu1). The intention of these series was to provide information on the 

subsurface stratigraphy and source sands, explore lateral variability, and evaluate the 

potential for re-liquefaction.   

 

 

Figure 6.15  Map showing location of the Walker paleoliquefaction site in Marked Tree, 
Arkansas 
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Figure 6.16  Overview of the sounding locations at the Walker paleoliquefaction site in 
Marked Tree, AR 
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Figure 6.17  Resistivity survey results (in ohm-m) from the west part of the Walker site 
(Barnes, 2000) 

 
Note: The northwest-trending sand blow and associated sand dike are indicated by high 
resistivity values (green).  White rectangle indicates the location of excavation trench 1 

which was oriented across the northwest-trending geophysical anomaly.  
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Figure 6.18  Resistivity survey results (in ohm-m) from the south part of the Walker site 
(Barnes, 2000) 

 
Note: The northwest-trending sand blow and associated sand dike are indicated by high 
resistivity values (green).  The white rectangle denotes the position of excavation trench 

2, which was oriented on the northwest-trending  
geophysical anomaly.  
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Figure 4.20 in Chapter 4 has shown the results from a representative SCPTu2 sounding 

(No. MTREE01) advanced to a depth of 32 meters at the Walker site, as well as the 

derived parameters and soil profile. The soil profile indicates a clayey layer in the upper 4 

meters underlain by an extensive deposit of relatively clean sand layers. The profile 

corresponds similarly with the boring and geological log of a nearby site reported by Liu 

et al. (1997).  

 

The Walker site is very close (15km) to Keiser, AR, where the 887.4m-deep well logging 

was performed, and therefore the deposit over the Walker site should be approximately as 

thick as that over the Keiser site. The approximate Vs shown in Figure 6.10 is applied to 

the Walker site. For nonlinear analysis in DEEPSOIL, the thickness of the delineated soil 

layer controls the maximum frequency that can be propagated by the layer as following: 

max4 f
V

h s=      (6-11) 

where h is the thickness of the soil layer, Vs is the shear wave velocity of the layer, and 

fmax is the maximum frequency that can be propagated. Based on the recommendation of 

Park (2003) with fmax = 25 Hz, the depths of the soil layers (h) can thus be calculated. 

Figure 6.21 shows the Vs profile input into DEEPSOIL, as well as the derived saturated 

unit weight Tγ  and small-strain shear modulus Gmax based on the equations suggested in 

Chapter 4. The symbols on this figure represent the average value of Vs, Tγ , and Gmax for 

the corresponding soil layers. 
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Figure 6.21  The shear wave velocity profile and derived unit weight and small-strain 
shear modulus for the Walker site at Marked Tree, AR 

 

The 1530 A.D. earthquakes include two major earthquake events of moment magnitude 

7.6 and 8.0, and their estimated epicenters are about 73km and 110km from the Walker 

site, respectively (Figure 6.22). For the magnitude 7.6 earthquake, one representative 

synthetic time-history response is generated for the Walker site using the program 

SMSIM, as shown in Figure 6.23. The bedrock motions are input into the DEEPSOIL 

program, and the time-history of the stress in each layer can be computed, hence, the 

CSR that is plotted in Figure 6.24. The computed amax of the surface ground motion is 

0.16g. 
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Figure 6.22  Distance from the Walker site to the estimated epicenters of the seismic 

events that occurred around 1530 A.D. in NMSZ (after Tuttle, 1999) 
 

amax = 0.14 g

Duration = 51 sec

amax = 0.14 g

Duration = 51 sec  

Figure 6.23  Example time-history of bedrock motion generated for the Walker site 
under the M 7.6 earthquake occurring around A.D 1530 using the program SMSIM 
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Using the Boore & Joyner (1991) attenuation relations shown in equation (6-1), the 

estimated amax at the Walker site is 0.15g, which is very close to that obtained from 

seismic response analysis by DEEPSOIL. The CSR calculated using the simplified 

procedure is also presented in Figure 6.24. It can be seen that the CSRs derived from the 

two approaches are very close.  
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Figure 6.24  Liquefaction analyses by deterministic approaches for the Walker site 
sounding (Mw = 7.6, epicentral distance = 73 km): (a) Based on normalized cone tip 

resistance; (b) Based on normalized shear wave velcotiy. 
 

Based on the deterministic approaches proposed by Robertson & Wride (1998) and 

Andrus & Stokoe (2000), the CRRs can be derived from both qT and Vs, and these are 
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shown respectively in Figure 6.24. Liquefaction is likely whenever the CRR value is less 

than the CSR value. The gaps in the CSR data represent soil layers that are not 

susceptible to liquefaction due to their classification (e.g., clayey soils for which 

liquefaction analyses are not relevant). Comparison between the CSRs and the CRRs 

shows that liquefaction is likely to occur in the depth range from 18 to 20 m.  

 

Similarly, the CRR probability curves (Chen & Juang, 2000; Juang & Jiang, 2000; Juang 

et al., 2001) can be applied to the CPT data from the Walker paleoliquefaction site. The 

probabilistic procedure is presented as the different liquefaction probabilities versus the 

corresponding depth in Figure 6.25. The probability is analyzed based on the independent 

stress-normalized tip resistance and the shear wave velocity, respectively. For each 

approach, two probability curves are presented, which are derived from the CSRs 

calculated using the simplified procedure and the DEEPSOIL procedure, respectively. 

The computed probability for the depth range from 17 to 20 m is from 20% to 60% for 

qT1 and 16% to 36% for Vs1. As this site has clear evidence of prior liquefaction, the 

results seems somewhat low.   

 

The same process can be applied to investigate the liquefaction potential of the Walker 

site under the 1530 A.D. earthquake of magnitude 8.0, which epicenter is 110 km away 

(Figure 6.22). Similarly, a time history of bedrock motion is generated by the program 

SMSIM corresponding to such an earthquake, as illustrated in Figure 6.26. The average 

amax on the ground surface computed by DEEPSOIL is 0.17 g. However, based on the 

Boore & Joyner (1991) attenuation relations, the amax at ground surface is 0.1g. Figure 
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6.27 shows the CSR computed by DEEPSOIL, the CSR by the simplified procedure, as 

well as the CRR based on qT and Vs respectively. From the CSR by the simplified 

procedure, the Walker site is not liquefiable under such an earthquake event. But the 

comparison between the CRRs and the CSR computed by DEEPSOIL shows that 

liquefaction would occur in the depth range of 16m to 20m, as well in the depth range 

from 11m to 12m. Figure 6.28 shows the liquefaction probability based on qT and Vs 

respectively, and it can be seen that the CSR computed from DEEPSOIL generally gives 

higher probability of liquefaction than that calculated using the simplified procedure. 

Both the probabilities derived from DEEPSOIL and the simplified procedure suggest that 

the depth range from 15 to 20m has the highest liquefaction potential.   
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Figure 6.25  Liquefaction analyses by probabilistic approaches for the Walker site 

sounding (Mw = 7.6, epicentral distance = 73 km): (a) Based on normalized cone tip 
resistance; (b) Based on normalized shear wave velocity. 
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Figure 6.26  Time-histories of bedrock motion generated for the Walker site under the M 
8.0 earthquake occurring around A.D 1530 using the program SMSIM 
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Figure 6.27  Liquefaction analyses by deterministic approaches for the Walker site 
sounding (Mw = 8.0, epicentral distance = 110 km): (a) Based on normalized cone tip 

resistance; (b) Based on normalized shear wave velcotiy. 
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Figure 6.28  Liquefaction analyses by probabilistic approaches for the Walker site 
sounding (Mw = 8.0, epicentral distance = 110 km): (a) Based on normalized cone tip 

resistance; (b) Based on normalized shear wave velcotiy. 
 

 

Liquefaction analysis at the Walker site shows that the CRRs derived from qT and Vs are 

quite consistent, though the two procedures were developed independently. For the 

magnitude 7.6 earthquake event, both the simplified procedure and the DEEPSOIL 

procedure give similar results of CSRs. By comparing the CRRs and CSRs, it is found 

that liquefaction would likely occur. For the magnitude 8.0 event, the DEEPSOIL 

procedure gives higher CSR and peak ground acceleration than the simplified procedure 

does. Based on the DEEPSOIL procedure, this site would liquefy during this event, while 

contradictory conclusions can be drawn according to the simplified procedure. 
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6.5.2  Liquefaction Evaluation at Hillhouse Site of Wyatt, MO 

The Hillhouse site is located at Wyatt, Missouri, as shown in Figure 6.29. An aerial 

photograph of the Hillhouse site and its surrounding features is presented in Figure 6.30. 

The site is about 3.25 km west of the Mississippi River and 0.5 km south of Brewer Lake. 

The resistivity contour plot (Figure 6.31) shows a broad area of high resistivity anomalies 

(green), indicating existence of liquefaction features (Barnes, 2000). Also shown in this 

figure are two trenches excavated for archeological investigation and dating purposes. 

Figure 6.32 presents the excavation log of trench 1, which exposed a sand blow deposit 

near the surface and a sand dike of 1.03 m wide. A sand dike of 32 cm wide is also 

observed from excavation trench 2 (Figure 6.33). According to radiocarbon dating of the 

deposits and analysis of artifacts found at this site, the liquefaction features were formed 

during the 900 A.D. earthquakes (Tuttle, 1999). This site is also the most northern site 

that has found liquefaction features attributed to the 900 A.D. earthquakes (Tuttle, 1999).  

 

The results of a SCPT sounding performed at this site are shown in Figure 6.34. The soils 

in the top 5m are clay, overlying a layer of silt mixture between 5m and 10m. Below 

10m, the soils are clean sands. Figure 6.35 presents the parameters derived from the CPT 

data, as well as the soil profile.  

 

Based on the color shading of the soil deposit thickness shown in Figure 6.2, the total 

depth of soil deposits at the Hillhouse site is about 400m thick. An approximate Vs 

profile can therefore be created for this site. The Vs in the top 24.7m is taken from the 

SCPTu test, and those between the depths of 24.7m and 400 m are the real Vs data 
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collected by downhole logging in Memphis, TN. The Vs profile and the derive profiles of 

unit weight Tγ  and small-strain shear modulus Gmax are similar to those in the top 400 m 

shown in Figure 6.21. 

 

 

Figure 6.29  Map showing location of the Hillhouse paleoliquefaction site in Wyatt, 
Missouri 
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Figure 6.30  Aerial photograph of the Hillhouse site and surrounding features 
 (Barnes, 2000) 
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Figure 6.31  Resistivity survey results (in ohm-m) at the Hillhouse site  
(Barnes, 2000) 

 
Note: The broad zone of high resistivity (green) trends may indicate the orientation of 

multiple liquefaction features.  Yellow rectangles indicate areas of extreme high 
resistivity.  White-filled rectangles indicate the location of excavation trenches.  
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Figure 6.32  Log of excavation trench 1 at the Hillhouse site exposing sand dikes 

 (Tuttle, 1999)   

 
Figure 6.33  Log of excavation trench 2 at the Hillhouse site exposing a sand dike 

(Tuttle, 1999) 
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Figure 6.34  Representative SCPTu results at Hillhouse paleoliquefaction site  
near Wyatt, MO 

 

The 900 A.D. earthquakes consist of three individual earthquake events with magnitudes 

of 8.1, 8.0, and 7.6. The Mw = 8.1 earthquake has the maximum magnitude and the 

shortest epicentral distance (65km) to the Hillhouse site (Figure 6.36), and therefore 

generates the strongest bedrock motion at this site. Figure 6.37 shows an example of 

time-histories of bedrock motion generated for this site using the program SMSIM. The 

average amax at the ground surface computed by DEEPSOIL is 0.19 g, and it is 0.18g 

according the the Boore & Joyner (1991) attenuation relations. 
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Figure 6.36  Distance from the Hillhouse site to epicenters of the seismic events that 
occurred around 900 A.D. in NMSZ [Modified from Tuttle (1999)] 
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Figure 6.37  Time-history of bedrock motion generated for the Hillhouse site under the 
Mw = 8.1 earthquake occurring around 900 A.D. using the program SMSIM 
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Similar to the analysis performed for the Walker site, the CSRs calculated by the 

simplified procedure and the DEEPSOIL procedure are plotted with the CRRs based on 

qT and Vs in Figure 6.38. The comparison between CSRs and CRR based on qT suggests 

that liquefaction is likely to occur in the depth ranges from 19.5 to 20.5 m and from 21 to 

22.5 m. While the comparison between CSRs and CRR based on Vs suggests that 

liquefaction is likely to occur in the region from 19 to 21m. The same zones are also 

found to have the highest potential for liquefaction from the probabilities shown in Figure 

6.39.  
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Figure 6.38  Liquefaction analyses by deterministic approaches for the Hillhouse site 
(Mw = 8.1, epicentral distance = 65 km): (a) Based on normalized cone tip resistance; (b) 

Based on normalized shear wave velcotiy. 
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Figure 6.39  Liquefaction analyses by probabilistic approaches for the Hillhouse site (Mw 

= 8.1, epicentral distance = 65 km): (a) Based on normalized cone tip resistance; (b) 
Based on normalized shear wave velcotiy. 

 

The CRRs derived from the qT and Vs data collected at the Hillhouse site show similar 

trends, which are consistent with what has been observed from the analysis for the 

Walker site. The value of the CSRs calculated using the simplified procedure and the 

DEEPSOIL procedure are very close. The comparison between the CSRs and CRRs 

shows that the CSRs are higher than the CRRs in some depth ranges, where liquefaction 

is consider likely in the event of such earthquakes.  

 

6.6  Development of Regional Liquefaction Criteria for the NMSZ 

In last section, liquefaction evaluation has been performed for two paleoliquefaction sites 

in the NMSZ (Walker site, AR and Hillhouse site, MO), assuming the same magnitude of 
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large earthquakes that liquefied these sites occur again. This liquefaction procedure has 

also been applied to the Yarbro site, Bugg site, Hueys site, Dodd Farm site, Johnson 

Farm site, and Nodena site. The results are presented in Appendix D.  

 

For each site, a liquefaction zone is delineated based on the comparison of the CRRs and 

CSRs, as shown in the corresponding figures. Although liquefaction might have also 

occurred at other depths, the selected liquefaction layer is the one that has most likely 

liquefied. Information on the liquefaction zones of the paleoliquefaction sites is presented 

in Table 6.4, including the estimated mean CSRs, qT1, Vs1, as well as earthquake 

magnitude. Using the magnitude scaling factor (MSF), the CSRs corresponding to 

earthquake magnitude Mw = 7.5 can be derived, and they are denoted as CSR7.5 here. 

Therefore, the CSR7.5 that have liquefied the sites can be plotted against the adjusted 

cone tip resistance [(qT1)cs], which is the equivalent qT1 in clean sands, and the 

normalized shear wave velocity (Vs1), as shown in Figures 6.40 and 6.41. The CSRs in 

Figure 6.40 are calculated using the simplified approach, while those in Figure 6.41 are 

obtained through site response analysis. Based on the CRR curve suggested by Robertson 

& Wride (1998), which is plotted on both Figure 6.40 (a) and 6.41 (a), most of the data 

points from the paleoliquefaction sites are non-liquefiable, which is incorrect given the 

clear evidence of previous liquefaction at these sites. The CRR curve suggested by 

Andrus & Stokoe (2000) is also compared with the data points in Figure 6.40 (b) and 6.41 

(b), and in both figures, data points from three of the liquefaction sites fall on the side of 

no liquefaction. It seems that the CRR curves suggested by both Robertson & Wride 
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(1998) using qT1 and Andrus & Stokoe (2000) using Vs1 underestimate the liquefaction 

potential of sandy soils in the NMSZ.  

 

The lower boundaries of the data points corresponding to the paleoliquefaction case 

histories in the NMSZ are plotted in Figures 6.40 and 6.41. If data fall below the 

suggested lower boundaries, it is unlikely that the soil would liquefy. Therefore, they are 

taken as the suggested new CRR curves for the NMSZ. Comparing the CRR curve 

suggested by Robertson & Wride (1998) and the CRR curves suggested for the NMSZ 

[Figure 6.40 (a) and Figure 6.41 (a)], the newly suggested CRR curves predicts 

liquefaction at lower CSR. The same conclusion can be drawn from the comparison of 

the CRR curve suggested by Andrus & Stokoe (2000) and the CRR curves suggested for 

the NMSZ [Figure 6.40 (b) and Figure 6.41 (b)]. The regional CRR curves developed 

using the simplified approach (Figure 6.40) predicts liquefaction at lower CSR than those 

developed from site response analysis (Figure 6.41). 

 

Table 6.4  Information on the liquefaction zones of the NMSZ paleoliquefaction sites 

Site Mw R 
(km) 

MSF CSR 
(s.) 

CSR7.5 
(s.) 

CSR 
(D.) 

CSR7.5 
(D.) 

qT1 (qT1)cs Vs1 
(m/s)

Walker 7.6 73 0.96 0.11 0.11 0.11 0.1056 80 80 185 
Walker 8.0 110 0.85 0.07 0.06 0.15 0.1275 80 80 185 

Hillhouse 8.1 65 0.82 0.13 0.11 0.14 0.1148 120 120 180 
Yarbro 8.1 5 0.82 N/A N/A 0.52 0.4264 80 80 200 
Bugg 7.6 25 0.96 0.52 0.50 0.3 0.288 160 160 200 
Hueys 7.6 25 0.96 0.4 0.38 0.3 0.288 130 130 180 
Dodd 7.6 8 0.96 N/A N/A 0.45 0.432 150 170 200 

Johnson 8.1 28 0.82 0.41 0.34 0.28 0.2296 160 160 180 
Nodena 7.6 48 0.96 0.2 0.20 0.16 0.1536 150 150 210 

Note: s. = simplified; D. = DEEPSOIL 
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Figure 6.40  CRR7.5 curves for clean sands developed from simplified approach and 
SCPTu data in the NMSZ: (a) Based on normalized cone tip resistance; (b) Based on 

normalized shear wave velocity. 
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Figure 6.41  CRR7.5 curves for clean sands developed from site response analysis and 
SCPTu data in the NMSZ: (a) Based on normalized cone tip resistance; (b) Based on 

normalized shear wave velocity. 
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Andrus & Stokoe (2000) suggested the following formula to fit the CRR curves based on 

normalized shear wave velocity Vs1: 

)11()( *
11

*
1

21
5.7

sss

s

VVV
b

c
V

aCRR −
−

+=    (6-12) 

where a, b, and c are curve fitting parameters, and Vs1
* is limiting upper value of Vs1 for 

liquefaction to occur. The same equation can be adopted to fit the regional CRR curves 

for the NMSZ. For the CRR curve based on Vs1 and site response analysis [Figure 6.41 

(b)], a = 0.025, b = 0.06, c = 100, and Vs1
* = 225 m/s. Equation (6-12) can be modified to 

the following form to fit the regional CRR curve based on normalized tip resistance qT1: 
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qqq
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c
qaCRR −

−
+=    (6-13) 

where qT1
* is limiting upper value of qT1 for liquefaction to occur. The regional CRR 

curve based on qT1 and site response analysis [Figure 6.41 (a)], a = 0.005, b = 0.7, c = 30, 

and qT1
* = 175.  

 

6.7  Summary 

Deterministic and/or probabilistic curves can be used with the stress-normalized tip 

resistance Ncq 1  (or qn) and normalized shear wave velocity 1sV  in evaluating the CRR. 

Based on the pattern of the epicenters and magnitudes of previous earthquakes, two 

scenario earthquake events are suggested for liquefaction evaluation in the NMSZ in the 

case of strong ground motions. With selected scenario earthquakes, the PGA can be 

estimated from empirical attenuation relations, and then the CSR can be estimated using 

the simplified procedure. With the availability of the profile of the dynamic soil 

properties, such as Vs, the CSR can alternatively be computed from seismic response 
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analysis. The seismic response analysis is carried out by the nonlinear analysis program 

DEEPSOIL herein, which is developed to account for the effects of deep soil deposits on 

site response. The CSR calculated this way is thought to be more reliable than that 

derived from the empirical simplified procedure. Redundancy information results from 

the CRRs derived from two independent readings and the CSRs calculated by two 

independent approaches, but it provides a higher level of confidence in the conclusions 

on liquefaction hazards. 

 

The liquefaction methods are applied to the paleoliquefaction sites in the NMSZ, 

assuming the same level of large earthquakes that liquefied these sites occur again. These 

sites include the Walker site, AR and Hillhouse site, MO discussed in this chapter, and 

the Yarbro site, Bugg site, Hueys site, Dodd Farm site, Johnson Farm site, and Nodena 

site presented in Appendix D. From the liquefaction analysis performed for these sites, it 

is found that CRRs derived from qT and Vs have similar trends. The CSRs computed by 

the DEEPSOIL procedure can be close to or quite different than those calculated using 

the simplified procedure. Although liquefaction evidence has shown that these sites 

liquefied during the earthquake events, the analysis results generally show lower 

probabilities of liquefaction than expected. Based on the analysis of the liquefaction 

zones at these paleoliquefaction sites, regional liquefaction criteria for the NMSZ have 

been developed. Comparison between the newly developed criteria and those suggested 

by other researchers show that the soils in the NMSZ are more prone to liquefaction upon 

the same seismic loading. 
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CHAPTER VII 
 
 

AGING EFFECTS ON SCPTU MEASUREMENTS IN NMSZ 
 
 

7.1  Overview 

The last major earthquakes in the NMSZ occurred approximately 200 years ago. It is 

commonly thought that aging effects increase soil strength and stiffness with the passage 

of time, although no significant change of density is observed (Schmertmann, 1991). The 

resistance to liquefaction [e.g. cyclic resistance ratio (CRR)] of sandy soils is also found 

to increase with time. Seed (1976) performed laboratory tests on identical sand samples 

that have been subjected to sustained loads for time ranging from 0.1 to 100 days prior to 

testing, and found that the cyclic resistance ratio (CRR) for initial liquefaction increases 

with the time, as shown in Figure 7.1. Since tests on samples of much longer time are 

virtually impossible, the CRRs of undisturbed sand samples that have subjected to a long 

time of sustained pressure are compared with those of freshly deposited samples of the 

same sand (Figure 7.1). The obtained data also indicated an increase of CRR with time.  

 

As a consequence of destructuration and increased porewater pressures caused by seismic 

ground motions, the earthquake-induced liquefaction might decrease the soil strength and 

stiffness due to obliteration of pre-earthquake aging effects. However, when saturated 

sandy soils are subjected to seismic cyclic loading, the relatively loose soil tends to 

rearrange its grains into a denser packing, and the liquefied deposit may be densified as 

the excess porewater pressure dissipates during subsequent reconsolidation, which could 

result in increased soil strength and stiffness. Therefore, the pre- and post-earthquake 
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SCPTu data that represent the soil strength and stiffness might be different, because of 

the obliteration of aging features and post-liquefaction densification. Following 

liquefaction, the aging process restarts on normally consolidated sands. Hundreds of 

years of aging can possibly increase the soil strength and stiffness. Figure 7.2 illustrates 

the conceptual effects of aging and earthquake-induced liquefaction on cone tip 

resistance (qT). 
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Figure 7.1  Influence of period of sustained pressure on stress ratio causing initial 

liquefaction (Seed, 1976) 
 

Chameau et al. (1991a) studied the liquefaction response of fill soils along the waterfront 

area of San Francisco after the 1989 Loma Prieta earthquake. The comparison of in-situ 

data obtained prior to and after the earthquake showed that the cone tip resistance qT 

increased significantly following the earthquake event at some of the investigated sites. 
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The same phenomena were observed in the SPT data and shear-wave velocity Vs. Figure 

7.3 shows the average cone tip resistance qT measured in 1979 before the earthquake and 

that in 1990 after the earthquake event in 1989 at the Yerba Buena Cove (YBC) site in 

San Francisco, CA (Chameau et al., 1991a). An obvious increase can be seen in these 

data, but it is unknown if the increase is caused solely by aging effects following a 

restructuring of the soil or because of post-liquefaction densification and/or aging with 

time. This chapter focuses on the aging effects on cone tip resistance qT and shear wave 

velocity Vs, which are directly related to soil strength and stiffness. During two large-

scale blasting tests carried out in the NMSZ, series of SCPTu tests were performed to 

evaluate the local aging effects. 
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Figure 7.2  Conceptual effects of aging and earthquake-induced liquefaction on cone tip 

resistance 
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Figure 7.3  Average cone tip resistance measured at the YBC site before and after the 
1989 Loma Prieta earthquake (Chameau et al., 1991a) 

 

7.2  Prior Studies of Aging Effects on Cone Tip Resistance 

7.2.1  Lab  Studies 

Dowding & Hryciw (1986) performed a laboratory study and observed aging effects in 

saturated sand with and without blast densification. The sand, which was fine and poorly 

graded, and had an initial relative density of Dr = 50%, was contained in a sand tank of 1 

m in height and 1m in diameter. Before blasting, the observed increase of tip resistance 

qT is consistent between different locations of the penetration tests, and the aging effects 

seem to be uniform throughout the sand tank. However, after blasting was detonated in 
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the center of the sand tank, the qT in the sand near the center axis of the tank increased 

more significantly than that located further away.  

 

The most systematic laboratory study of aging effects on penetration resistance is that 

conducted by Joshi et al. (1995). Two types of sands, River sand and Beaufort Sea sand, 

were used in this study, and their physical characteristics are listed in Table 7.1. They 

were aged under one or more of the following conditions: dry state, submerged in 

distilled water, or submerged in sea water. Penetration resistances obtained from series of 

small-scale penetration tests were taken at 1 day, 1 week, and other times up to 2 years 

after placement of the sands. According to these data, Joshi et al. (1995) proposed the 

following equation to estimate the aging effects on penetration resistance, for an aging 

period of 10 days or more: 

( )bt ta
P
P

=
1

     (7-1)  

where t is the aging period in terms of days, Pt is the penetration resistance at time t, P1 is 

the penetration resistance measured on the first day after the sand is placed, and a and b 

are constants related to the environmental conditions of the sands. The values of a and b 

suggested by Joshi et al. (1995) are given in Table 7.2. Figure 7.4 plots the experiment 

data of River sand in dry state and in distilled water, as well as their conceptual behavior 

described by equation (7-1). Analogously, equation (7-1) can be used to express changes 

in cone penetration resistance as following: 

( )
( ) ( )b

T

tT ta
q
q

=
1

     (7-2)  

where ( )tTq  and ( )1Tq  are the cone penetration resistance at time t and on the first day. 
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Table 7.1  Physical characteristics of the sands used by Joshi et al. (1995) 

 River Sand Beaufort Sea Sand 
Mean Grain Size, D50 (mm) 0.42 0.34 
Uniformity coefficient, UC 2.39 2.67 
Minimum density (kN/m3) 14.6 14.3 
Maximum density (kN/m3) 16.6 16.3 

Particles shape 
characteristics 

More angular, less 
rounded 

Less angular, more rounded, 
with some flaky particles 

 

Table 7.2  Values of constants a and b suggested by Joshi et al. (1995) 

Environmental Condition a b 
Dry state 0.90 0.06 

Distilled water 0.75 0.15 
Sea water 0.70 0.17 
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Figure 7.4  Behavior of penetration resistance of dry river sands and river sands in sea 

water (after Joshi et al., 1990) 
Note: Pt is the penetration resistance at time t, P1 is the penetration resistance on the first 

day after the sand is placed. 
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Baxter & Mitchell (2004) performed a similar series of lab tests on two types of sands: 

Evanston beach sand and Density sand. Evanston beach sand is the same sand used by 

Dowding and Hryciw (1986) in their laboratory experiment to observe time-dependent 

increases in penetration resistance after blasting. It is a tan, subangular, poorly graded 

fine sand from a Lake Michigan beach in Evanston, Illinois. Density sand is a white, 

rounded, poorly graded, fine to medium sand and it is commercially available from 

Humbolt Inc. Samples of these two sands were prepared with a certain relative density 

(40 or 80%) using different pore fluid (distilled water, ethylene glycol, CO2 saturated 

water, and air). They were put in an environment of a certain temperature (25 oC or 40 

oC) for a period of time range from 30 to 118 days. This study did not observe noticeable 

increases in mini-cone penetration resistance of sands. 

 

7.2.2  Field Case Histories 

Most observations of aging effects in sands are from ground improvement projects, in 

which soils have been improved by ground modification techniques such as subsurface 

blasting, vibrocompaction, and dynamic compaction. Often, during ground modification 

of loose sands, liquefaction is typically induced in the saturated sands as a manifestation 

of the intended densification process. Of particular interest are projects that utilize 

underground blasting, as the induced shock from the exposion(s) can mimic wave 

propagations. The generated waves may bear similarities with ground motions 

comparable to those imparted by earthquakes. A summary of field case histories found in 

literature, in which aging effects of sands were reported, is presented in Table 7.3. 
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Table 7.3  Summary of case histories related to aging effects observed in the field 
 

Site Material Means of 
ground 

improvement 

Observed Phenomenon Reference 

Water power 
project close to 
Volga River, 

Quartz sand Hydraulically 
placed fill 

SPT blow counts N almost 
linearly increased from 2.1 

to 4.4 in four months 

Denisov et 
al. (1963) 

Beside the 
Volga River 

Saturated fine sand 
to sandy silt 

Blasting SPT resistance of loose sand 
increased due to blasting, 
while that of dense sand 

decreased 

Denisov & 
Dudler 
(1967) 

Nagoya, Japan Man-made sand  Fill Decreasing damage rate with 
age during the Tonankai 

earthquake in 1944 

Ohsaki 
(1969) 

Jebba Dam Fill material and 
natural sand 

Vibrocompaction The time dependent 
increase, measured between 

day 9 and day 24 after 
vibrocompaction, was 

approximately 68% for the 
fill and 33% for the sand 

Mitchell and 
Solymar 
(1984); 
Solymar 
(1984) 

Jebba Dam, 
Nigeria 

Alluvium 
comprising fine- to 

coarse-grained, 
round to 

subangular 
quartzitic sands 

Hydraulic fill CPT tip resistance increased 
significantly with time 

Mitchell & 
Solymar 
(1984); 
Mitchell 
(1986) 

Jebba Dam, 
Nigeria 

Alluvium 
comprising fine- to 

coarse-grained, 
round to 

subangular 
quartzitic sands 

Blasting Post-blast CPT resistance 
increased with time 

Mitchell & 
Solymar 
(1984); 
Mitchell 
(1986) 

Jebba Dam, 
Nigeria 

Alluvial sand with 
uniform, fine to 
coarse quartzitic 

sand 

Dynamic 
compaction 

A substantial increase in 
CPT tip resistance after 

compaction. 

Solymar & 
Reed (1986) 

Field data in 
Japan and full-
scale lab tests 

Recent fill sites 
and natural sand 

deposits 

Fill and natural 
deposit 

SPT blow counts N 
increases with age 

Skempton 
(1986) 

St. Johns River 
Power Parke, 
Jacksonville, 

Florida 

Uncemented loss, 
relatively clean 

quartz sand 

Dynamic 
Compaction 

Significant increase in CPT 
tip resistance due to dynamic 

compaction 

Schmertman
n et al. 
(1986) 

St. Johns River 
Power Plant 
near 
Jacksonville, 
Florida 

Very low to dense, 
fine quartz sand 

Blasting The increase of CPT tip 
resistance is a function of 

time after densification, and 
the rate and magnitude 

appear to depend on the size 
of initial disturbance. 

Schmertman
n et al. 
(1986) 

 

Bay Farm 
Island, 

California 

Hydraulic fill Dynamic 
Compaction 

The average CPT tip 
resistance increased by 10% 

Petraborg 
(1987) 
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Table 7.3  Summary of case histories related to aging effects observed in the field 
(Continued) 

 
Site Material Means of 

ground 
improvement 

Observed Phenomenon Reference 

Canadian 
Beaufort Sea 

Slight silty quartz 
sand 

Hydraulic fill No aging effects are 
observed 

Jefferies et 
al. (1988) 

Fort McMurray, 
Canada 

Oil sand Blasting SPT blow counts increased 
dramatically 

Handford 
(1988) 

Pointe Noire, 
Canada 

Clean, medium to 
coarse sand that 
are extremely 

loose 

Dynamic 
Compaction 

Enormous increase in 
average CPT resistance after 

dynamic compaction, and 
additional 20% increase 

within the next 8 days after 
compaction. 

Dumas & 
Beaton 
(1988) 

Harriet’s Bluff, 
Georgia 

Loose to medium 
dense, uniformly 
graded, fine sand 

Blasting The CPT tip resistance 
decreased in the first couple 
of days, and then it did not 
show appreciable change 

after 30 days. 

Hryciw and 
Dowding 

(1988) 

Gray Beverages, 
Annacis Island, 

British 
Columbia, 

Canada 

Deltaic and 
alluvial deposits 

Vibrocompaction Due to the large variation in 
the results of the CPT 

resistance, no consistent 
increase or decrease was 

observed. 

Massarsch 
& Vanneste 

(1988); 
Brown 
(1989) 

Zeebrugge 
Harbour, 
Belgium 

Dumped sea sand 
that is clean and 
rather uniform. 

Hydraulic fill 
and then blasting 

The average tip resistance 
increased 56% during the 
first year after placement; 

The tip resistance decreased 
one hour after blasting, and 

then it increased 
significantly with time. 

 

Carpentier et 
al. (1985); 

Van Impe & 
Meyus 
(1990) 

Thap Sahao 
Dam, Thailand 

Ranging from a 
fine sandy silt to a 

well graded 
gravelly sand 

Dynamic 
Compaction 

The SPT blow count was 
found to continue to 

increase significantly with 
time after compaction. 

Gambin 
(1987); 

Fitzhardinge 
(1990) 

Annacis Island, 
Vancourver, 

Canada 

Hydraulic fill 
dredged from the 

Fraser River 

Vibrocompaction For the loose sand fill, the 
cone tip resistance increased 

from about 5 MPa to 20 
MPa. 

Campanella 
et al. (1990) 

Canadian 
Beaufort Sea 

Fill material with 
fines content less 

than 2% 

Blasting The CPT tip resistance 
increased immediately after 

blasting, as well as with 
time. 

Jefferies 
(1991) 

Hong Kong Deep hydraulic fill Vibrocompaction The cone resistance 
increased markedly in one 
year after the compaction 

Massarsch 
& Heppel 

(1991) 
Geeley, 

Colorado 
Poorly graded 
gravelly to fine 

sand 

Blasting Both the tip resistance and 
sleeve friction increased 
after an initial decrease 

following blasting 

Charlie et al. 
(1992) 
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Table 7.3  Summary of case histories related to aging effects observed in the field 
(Continued) 

 
Site Material Means of 

ground 
improvement 

Observed Phenomenon Reference 

Chicopee 
Industrial Park, 
Massachusetts 

Loose to very 
loose saturated 
alluvial sands 

Blasting The tip resistance increased 
significantly between two 

weeks and five months after 
blasting 

La Fosse & 
von 

Rosenvinge 
(1992) 

Chek Lap Kok 
airport in Hong 

Kong 

Hydraulically 
placed sand fill 

Vibrocompaction A clear increase in CPT tip 
resistance is observed 

Ng et al. 
(1996) 

Treasure Island 
in San Francisco 

Bay 

Loose to firm sand 
fill over San 

Francisoc Bay 
mud clays 

Blasting CPT tip resistance dropped 
following blasting, and then 

increased significantly 

Ashford et 
al. (2004) 

 

Significant aging effects in clear sands have been observed in conjunction with the 

foundation densification program for Jebba Dam in Nigeria (Mitchell & Solymar, 1984; 

Solymar, 1984). This rockfill dam is an embankment of 42 m in height and founded on an 

alluvial sand deposit, that has a maximum thickness of 70 m. The sands are comprised of 

medium to coarse silica sand particles that are subrounded to rounded in shape. Blasting 

and vibrocompaction were used to densify the loose to medium-dense portions of river 

sands that are located as deep as 40m. Observations following blast-densification in the 

Jebba Dam foundation showed that the cone penetration resistance immediately 

following ground densification decreased, due to the destruccturation of the aging effects 

(Mesri et al., 1990). The decrease was not caused by the unfinished dissipation of 

seismically-induced extra porewater pressure, for any excess pore pressures would be 

fully dissipated in the medium to coarse sands within a few minutes (Mitchell & 

Solymar, 1984). However, the post-liquefaction aging effects at Jebba increased the soil 

strength quickly. Figure 7.5 shows the cone tip resistance measured at the Jebba Dam site 

before and after explosives were detonated nearby. It represents the typical loss of cone 
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tip resistance due to blast disturbance, followed by significant increases observed during 

this project (Mitchell & Solymar, 1984). At the Jebba Dam site, a significant increase of 

cone tip resistance with time was also observed after the foundation was densified using 

vibrocompaction, as well as after sandy hydraulic fill was placed.  
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   (a)      (b) 

Figure 7.5  Aging effects on cone tip resistance at Jebba Dam site in Nigeria:  
(a) Data before and 8 days after blasting; (b) Data collected 8 days after and 95 days after 

blasting (after Mitchell & Solymar, 1984) 
 

Blast-induced liquefaction was initiated for the Cooper River Bridge in Mount Pleasant, 

South Carolina. Two sets of blast events were set off, and each of them consisted of a 

sequence of timed blasts. Piezometers clearly showed dramatically elevated porewater 

pressures following the blasts. Water was also observed to flow to the ground surface 

after these events. Series of CPTu tests were performed before, during, and after the 

blasting events. The measured cone tip resistances are presented in Figure 7.6. 
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Comparing the CPTu data measured before and just after the blast events, obvious 

decrease of tip resistance qT is observed after every event in the depth range from 3.3 to 

5.6 m, which delineates the liquefied sand zone. From this figure, it can be seen that qT in 

the liquefied sand zone increased significantly one month after the second blast event, 

and it even surpassed its value before the blasting in depth range from 4.6 to 5.2 m, but it 

did not fully resume to original qT values in zone 3.5 m to 4.6 m. 

 

Ashford et al. (2004) performed blast testing at Treasure Island in San Francisco Bay. 

Treasure Island was constructed by hydraulic and clamshell dredging, and consists of 

loose to firm sand fill over San Francisoc Bay mud clays. The island serves as a National 

Geotechnical Experimentation Site (NGES) and full details are given elsewhere (e.g. 

Benoit, 2000; Faris & de Alba, 2000). The blasting site was excavated to a depth of 1.2m 

in order to minimize the cap effect caused by the nonliquefiable soil at the ground 

surface. The porewater pressure transducer implemented at the site indicated that the 

porewater pressure was dramatically increased immediately after the blasting was set off, 

while the surface manifestation of liquefaction (sand boils and water flows) occurred 3 to 

5 minutes after the blasting.  Figure 7.7 shows the results of CPTu soundings performed 

prior to blasting, 2 days after blasting, and 42 days after blasting. The results clearly 

indicate that the penetration resistance measured 2 days after blasting decreased 

compared with that measured before blasting, but the penetration resistance and sleeve 

friction measured 42 days later showed significant increase over those measured before 

blasting (Ashford et al., 2004). As to the friction ratio, its value does not seem to be 

significantly changed by the blasting and time effects. 
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Figure 7.6  CPT soundings performed before, during, and after blast events at Cooper 

River Bridge site in Mount Pleasant, South Carolina [Data from Camp (2004)] 
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Figure 7.7  CPT results at induced liquefaction study site prior to, 2 days after, and 42 
days after blasting at the Treasure Island in San Francisco Bay  

(Ashford et al., 2004) 
 

7.2.3  Estimation of Aging Effects on qT Based on Field Case Histories 

Based on considerations of secondary compression, Mesri et al. (1990) suggested the 

following expression for estimating the increase of qT in the short-term aging timeframe: 

( )
( )

CD CCC

RRT

tT

t
t

q
q α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=      (7-3) 

where ( )RTq  is a reference cone tip resistance at a reference time tR > tp, and (qT)t is the 

cone tip resistance at any time t > tR. The parameter CD reflects the densification effect, 

and is related to the procedure of densification and the increase of relative density Dr. The 

value of CD is in the range from 10 to 15 for blasting densification, while in the range 

from 4 to 8 for dynamic compaction. The parameter αC  is the secondary compression 
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index and Cc is the virgin compression index. In the absence of laboratory 

compressibility data, Mesri et al. (1990) suggested typical values of cCCα to be 0.04 for 

inorganic clays, and in the range of 0.02 to 0.03 for silts and sands.  

 

Based on data from case studies, as well as qT data obtained following a blast 

densification in a sandy alluvium, Charlie et al. (1992) suggested that qT with time fits the 

following empirical equation: 

( )
( ) NK
q
q

weekT

weeksNT log1
1

+=     (7-4) 

where N is the number of weeks since the sands are disturbed, and K is an empirical 

constant related to the air temperature during the measurements of qT. However, Jefferies 

& Rogers (1993) disagreed with the air temperature estimated by Charlie et al. (1992), 

and pointed out the relationship of K with temperature is not significant. The observed 

values of K vary from 0.02 to 1 for the limited number of cases considered. With such a 

huge range, a forward prediction of the aged qT following liquefaction would be highly 

unreliable.   

 

As to the aging effects in geologic time, very few long-term data are available. Based on 

data compiled by Skempton (1986) supplemented with other studies, Kulhawy & Mayne 

(1990) and Jamiolkowski et al. (1988) proposed relationships between SPT penetration 

resistance, relative density, and the passage of time. Affected similarly by the 

compressibility of the soil and the effective horizontal stress, the qT from the SCPTu and 

the N-value from the SPT can be correlated, and the ratio qT/N is constant, given a certain 
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mean grain size (Robertson et al., 1983; Kulhawy & Mayne, 1990). Figure 7.8 shows the 

equivalent tip resistance with time converted from the relationships proposed by 

Kulhawy & Mayne (1990) and Jamiolkowski et al. (1988) respectively. Also shown in 

this figure are the data of CPT tip resistances obtained from 7 sites during the Canadian 

Liquefaction Experiment (CANLEX) project (Wride et al., 2000). The sand deposits at 

these sites range in age from approximately 1 month to approximately 4000 years (Wride 

et al., 2000), and a trend line is drawn through these data, indicating the possible aging 

effects on cone penetration resistance in a long term. Since these sands may have been 

affected by a number of other variables, such as overconsolidation, desiccation, 

groundwater fluctuations, and creep (Wride et al., 2000), the observed trends may reflect 

factors other than just aging.  

 

By extending the trend line of the CANLEX data (Figure 7.8) to very young age, the tip 

resistance, normalized by relative density, for one day old sand is about 100. Therefore, 

the tip resistance, normalized by the reference tip resistance of one day old, can be 

derived for the CANLEX data, and they are plotted on Figure 7.9. Similarly, the tip 

resistance, normalized by relative density, for one day old sand can be obtained by 

extending the curves suggested by Kulhawy & Mayne (1990) and Jamiokowski et a. 

(1988) (Figure 7.8). Thus their corresponding curves of the tip resistance, normalized by 

the reference tip resistance of one day old, can be derived, as shown in Figure 7.9. Also 

plotted on Figure 7.9 is the prediction of aging effects based on equation (7-2) suggested 

for sands in fresh water environment by Joshi et al. (1995), as well as the prediction 

based on equation (7-3) suggested by Mesri et al. (1990), with the parameters suggested 
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for sands. From this figure, it can be seen that aging effects vary significantly among 

these proposed prediction schemes. The equation suggested by Joshi et al. (1995) fits the 

CANLEX data relatively well. 
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Figure 7.8  Possible aging effects on cone penetration resistance normalized by relative 
density [after Wride et al. (2000)] 

 
Note: DR is relative density in decimal, and qT1 is overburden-stress normalized tip 

resistance. 
 

Except for the relationship suggested by Jamiolkowsi et al. (1988), the other three curves 

shown in Figure 7.9 suggest the logarithm of (qT)t/(qT)1 generally increases linearly with 

the logarithm of time t: 

( ) ( )[ ] ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

365
1logloglog 1 tkqq TtT   (7-5) 
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where k is the slope of the linear relationship, t is in the unit of years. The value of k is 

about 0.05, 0.15, 0.20 corresponding to the curves suggested by Kulhawy & Mayne 

(1990), Joshi et al. (1995), and Mesri et al. (1990), respectively. The value of k should be 

related to many factors, such as sand type, pore fluid, sand origin, and method of 

destructuration. A hypothesis is made here for deriving the value of k:  

4
4321 kkkk

k
+++

=     (7-6) 

where k1, k2, k3, k4 are the hypothetical influence factors of sand type, pore fluid, sand 

origin, and method of destructuration. Values are assigned to them intuitively, and are 

listed in Table 7.4. Figure 7.10 shows the hypothetical behavior of cone tip resistance 

with time for different sands. 
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Figure 7.9  Comparison between the predictions proposed by Mesri et al. (1990) and 

Joshi et al. (1995) 
Note: ( )tTq  and ( )1Tq  are the cone penetration resistance at time t and on the first day 

after sand is deposited 
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Table 7.4  Hypothetical influence factors of sand type for aging effects  
on cone tip resistance 

 
Sand Type Pore Fluid Origin Destructuration 
Sand 
Type 

K1 Pore Fluid 
Type 

K2 Origin K3 Method of 
Destructuration 

K4 

Clean 
sand 

0.05 Dry 0.05 Man-made 
(e.g. Crushing) 

0.05 Fill 0.05 

Silty 
Sand 

0.08 Fresh 
water 

0.08 Aeolin 0.08 Earthquake 0.08 

Clayey 
Sand 

0.12 Salt water 0.1 Sediment 0.1 Vibration 0.08 

  Water with 
CaCO3 

0.12   Dynamic 
Compaction 

0.08 

  Water in 
fine silica 

0.15   Subsurface 
Blasting 

0.12 
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Figure 7.10  Hypothetical behavior of cone tip resistance with time for different sands 

 

7.3  Aging Effects on Shear Wave Velocity 

7.3.1  Lab Studies 

The small-strain shear modulus Gmax can be derived from the shear wave velocity Vs from 

Gmax = ρT Vs
2, where Tρ  is the total unit mass density and g is acceleration due to 

gravity. From lab resonant column tests, Afifi & Woods (1971) found that Gmax of air-dry 

254



sands increased linearly with the logarithm of time as shown in Figure 7.11 (a), although 

the density does not change. Figure 7.11 (b) presents the back-calculated ratio of shear 

wave velocity Vs at time t and that at 1 minute. The increase of Vs most closely follows a 

linear relationship with the logarithm of time (Anderson & Stokoe, 1978). A coefficient 

of shear modulus increase with time is proposed to express the time effect of  Gmax: 

    ( )1210max log ttGIG Δ=     (7-7) 

where t2 and t1 are respective times, and maxGΔ  is the change in Gmax from t1 to t2 

(Anderson & Stokoe, 1978). The value of IG equals the increase of Gmax per log cycle of 

time, and for air-dry sands it is typically in the range of 2% to 5% of the Gmax measured 

approximately one day after aging starts (Afifi & Woods, 1971). From Figure 7.11 (b), 

the increase of Vs per log cycle of time is about 0.42%. 

 

Using laboratory bender elements, Human (1992) performed a study on the aging effects 

of shear wave velocity. With different confining stresses, void ratio, stress anisotropy and 

preparation methods, a series of sand samples were aged for up to 29 days, and their Vs 

were measured with time, as shown in Figure 7.12. It was found that the change of Vs 

with time in dry sands generally follows the following form: 

ii

t

t
tV

V
V

log1 α+=      (7-8) 

where Vt is the shear wave velocity at time t, Vi is the initial shear wave velocity at time 

ti, and αV  is a constant. The reported αV  ranges from 0.6% to 1.1%, and Human (1992) 

noticed that it corresponds to an increase in Gmax of 1.2% to 2.1% per log cycle of time, 

lower than the corresponding range of 2% to 5% suggested by Afifi & Woods (1971). 
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Although systematic aging effect is observed in dry sands, no apparent increase in Vs was 

found for saturated samples in this study. However, according to tests performed by 

Hardin & Richart (1963), the Vs of wet sands is 10% less than that of dry sands. 
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Figure 7.11  Aging effects on shear modulus for air-dry Ottawa sand at constant 

confining pressure [after Afifi & Woods (1971)] 
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Figure 7.12  Aging effects on shear wave velocity in dry sand with increasing level of 
confining stress (Human, 1992) 

 

7.3.2  Field Studies 

The shear wave velocity of sands has been recognized to increase with time. Stokoe & 

Santamarina (2000) reported a pilot study of blast densification aimed to densify a loose 

fine silty sand layer located about 7 to 11 m below the ground, as shown in Figure 7.13. 

Also presented in this figure is the comparison of the shear wave velocities measured 

before blasting and at different times after blasting. The shear wave velocities measured 1 

day after blasting was significantly lowered compared with that measured before blasting, 

and from the measurement made 7 days and 10 months after blasting, the shear wave 

velocity increased significantly with time.  

 

As to the aging effects on Vs in geologic time, Wride et al. (2000) presented a set of data 

of shear wave velocities, normalized for relative density, collected from the CANLEX 

sites as shown in Figure 7.14, illustrating the possible aging effects on Vs in geologic 
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time. These data follow a good linear relationship in a log-log scale, with the logarithm of 

the normalized shear wave velocity increasing about 4.9% per log cycle of time. The 

aging effects on Vs suggested by Wride et al. (2000) are much more significant than those 

found in the laboratory experiments, and it is difficult to judge which can be used for the 

NMSZ. 
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Figure 7.13  Shear wave velocities measured before and after a blasting  
(Stokoe & Santamarina, 2000) 
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Figure 7.14  Data of shear wave velocity with time from CANLEX project  
(Wride et al., 2000) 

Note: Vs1 is stress-normalized shear wave velocity, and DR is relative density in decimal. 
 

7.4  Uncertainty of CPT measurements in NMSZ 

 
In order to compare the measurements taken at different time, it is important to know the 

relative uncertainty of the measurements. The uncertainty of the in-situ measurements 

taken by CPT is associated with both the horizontal variability of the soils and equipment 

errors used to perform the test. Because of the inherent lateral variability of the soils, 

measurements from different soundings might vary significantly or moderately, 

depending on the distance between test locations, geologic setting, and/or environmental 

factors. The random or systematic errors of the equipment would result in differences 

between the measured value and the real value of parameters intended to measure.  

 

A series of CPT tests was performed at the Walker paleoliquefaction site near Marked 

Tree, AR, as discussed previously in Chapter 6. The CPT testing was performed in two 
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linear arrays as shown in Figure 6.16 in Chapter 6. The intention of these series was to 

provide information on the subsurface stratigraphy and source sands, explore lateral 

variability, and evaluate the potential for re-liquefaction.   

 

The average, maximum, and minimum value of CPT measurements in array 1 and array 2 

are presented in Figure 7.15 and 7.16 respectively. The profiles mainly consist of clay 

and silt for the upper 4 m in array 1 and the upper 5 m in array 2, and the remainder of 

the profiles to depths of at least 16 meters indicates the presence of sand. The soundings 

in each array were performed about 5 meters apart, and the horizontal variability of the 

soils plus equipment errors are reflected in the differences of the CPT measurements 

within these soundings. A statistical study was carried out for the average measurement 

of tip resistance and sleeve friction in the sand layer from 7 m to 13 m. The reason to 

choose this depth range is that it consists of a relatively uniform sand layer and the CPT 

measurements are available in all the presented soundings. Tables 7.5 lists the average 

value of the readings (qT, fs and FR) in the depth range from 7m to 13m of soundings in 

array 1 and array 2, and their statistics are shown in Table 7.6. Both sounding MTREE02 

and MTREE13 were excluded from this analysis, because they were stopped prematurely 

at shallow depths due to excessive inclination.  

 

Comparing the statistics for the two arrays, it can be seen that array 2 has a more 

significant variance for the average value of CPT measurements in the depth range from 

7m to 13m, with COVs (Coefficient of Variance) for qT and fs in the range from 11% to 

16%, twice as high as those for array 1. The COV for FR of both arrays are about 8%, 
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and it seems that the range of variation of FR is not significantly different between the 

two arrays. The ratio of the average qT and fs between any two soundings is within the 

range from 0.8 to 1.25 in array 1, and from 0.7 to 1.5 in array 2. These reflect a more 

significant horizontal variability of the soils where soundings in array 2 are performed.  

 
Table 7.5  Average value of CPT measurements from 7m to 13m at Walker Site in 

Marked Tree, Arkansas 
 

 Sounding qT (MPa) fs (kPa) FR (%) 
Marktree 1 18.62 143.04 0.77 
Marktree 3 19.24 118.31 0.62 
Marktree 4 19.86 126.76 0.64 
Marktree 5 19.18 131.50 0.69 
Marktree 6 19.09 128.06 0.67 
Marktree 7 20.85 146.94 0.71 

 
 
 

Array 1 

Marktree 8 21.69 135.08 0.61 
Marktree 9 22.48 163.78 0.73 
Marktree 10 21.58 159.23 0.75 
Marktree 11 19.94 141.14 0.71 
Marktree 12 17.11 128.85 0.76 

 
 
 

Array 2 

Marktree 14 17.70 109.77 0.63 
 

Table 7.6  Statistics of CPT measurements from 7m to 13m at Walker Site in Marked 
Tree, Arkansas 

 
 Item qT  fs  FR  

Average 19.79 132.81 0.67 
Stdev 1.100 9.836 0.057 

COV (%) 5.556 7.406 8.467 
Max/Min 1.16 1.24 1.26 

 
 

Statistics 
of Array 1 

Min/Max 0.86 0.81 0.80 
Average 19.76 140.55 0.72 

Stdev 2.34 22.21 0.054 
COV(%) 11.87 15.80 7.54 
Max/Min 1.31 1.49 1.22 

 
 

Statistics 
of Array 2 

Min/Max 0.76 0.67 0.82 
Average 19.78 136.04 0.69 

Stdev 1.63 15.75 0.058 
COV(%) 8.25 11.58 8.34 
Max/Min 1.31 1.49 1.26 

 
Statistics 
of Array 1 
and Array 

2 
Min/Max 0.76 0.67 0.80 
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Figure 7.15  Presentation of CPT measurements from array 1 at Walker site in Marked 
Tree, Arkansas 
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Figure 7.16  Presentation of CPT measurements from array 2 at Walker site in Marked 
Tree, Arkansas 

 

7.5  CPT Tests Performed During Embayment Seismic Excitation Experiments 

7.5.1  Test Sites 

During the Embayment Seismic Excitation Experiments (ESEE), two test sites were 

selected to detonate underground explosives to generate surface waves. The first site was 
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located in the southern NMSZ near Marked Tree, AR, and the second site selected in the 

northern NMSZ near Tiptonville, TN, as shown in Figure 7.17. Figure 7.18 illustrates the 

setup of the explosive boreholes. Each borehole was drilled with a diameter of 0.56 m 

and to a depth of 48.8 m. The upper 24.4 m was lined with steel casing for facilitating the 

placement of explosives. The southern site was configured with 1180 kg (2600 lbs) of 

ammonium nitrate explosives, which were emplaced in a single borehole. The northern 

explosion received 2268 kg (5000 lbs), which are equally emplaced in two boreholes that 

were situated 28.3 m away from each other. The explosives in the two boreholes were 

detonated simultaneously during that experiment.  

 

The seismic CPT tests were performed before blasting, approximately 1 day after, and 8 

months after the blasting at both sites. In addition, at the TN site, a SCPTu was conducted 

within 2 to 3 hours after blasting. They are located in a small area of 1 m2 situated about 

31 m away from both the boreholes at the southern site, and about 32 m from the 

borehole at the northern site. 

 

7.5.2  Test Results at Arkansas ESEE Site 

The southern ESEE site is located less than 20 km away from the Walker site in Marked 

Tree, AR. Figure 7.19 presents results of the SCPTu sounding performed prior to the 

ESEE event, as well as the interpreted soil profile. The soil profile at the ESEE site is 

similar to that at the Walker site, with a 2.5 m thick clayey layer underlain by a thick 

layer of clean sand to depths exceeding 20 m. Figure 7.20 compares the data from 

soundings performed at different times. The values of qT and fs measured 40 hours after 
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blasting generally decreased, compared with the measurements before the blasting. The 

decrease is especially significant in the depth range from 4 to 12 m. The shear wave 

velocity Vs also decreased in the depth range from 2 to 10.5 m. Decreases of these 

measurements very likely resulted from the blasting-induced liquefaction. Figure 7.21 

compares the qT and fs measured 40 hours and 229 days after the blasting. The tip 

resistance qT increased with time in the depth range from 5 to 9 m, which is within the 

suspected liquefied zone. The sleeve friction fs showed increase with time below depth of 

3.5 m. The shear wave velocity Vs consistently decreased with time along almost all the 

depths. It is contradictory to expectation based aging effects, and the reasons are 

unknown. 

kmkmkm

 
Figure 7.17  Locations of the Embayment Seismic Excitation Experiment (ESEE) sites in 

Marked Tree, Arkansas and Tiptonville, Tennessee 
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Figure 7.18  Setup of the explosive borehole in ESEE experiments 
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Figure 7.19  SCPTu data and interpreted soil profile prior to ESEE Marked Tree, AR 
event 
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Figure 7.20  SCPTu data collected before and 40 hours after ESEE Marked Tree, AR 
event 
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Figure 7.21  SCPTu data collected 40 hours and 229 days after ESEE Marked Tree, AR 
event 

 

In order to have a better look at the variations between these SCPTu measurements, the 

average values of qT, fs, u2 and FR in a depth interval of every 1 m are calculated, and 

they are presented in Figure 7.22. The average value of porewater pressure (u2) and 
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friction ratio (FR) do not seem to have changed due to the earthquake. Some differences 

can be seen between the qT, fs and Vs, but they are not significant and no consistent trend 

is observed. 
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Figure 7.22  Average SCPTu data in every 1 meter interval (Data collected before and 
after ESEE Marked Tree, AR event) 

 

As a more objective approach to evaluate how significantly the CPT data at this site are 

influenced by the blasting and aging effects, statistical analysis is applied to the sand 

layer within the depth range from 8m to 14m. Similar to the sand layer selected for 

statistical study at the Walker site, this sand layer is relatively uniform, and it is within 

approximately the same depth range and has the same thickness as the sand layer at the 

Walker site. Table 7.7 lists the average values of qT and fs for this sand layer in the 

soundings performed at the ESEE site in Marked Tree, and the ratios between these 

average values from different soundings are listed in Table 7.8. The qT ratio (qT)m/(qT)n is 

defined as the ratio of the average qT measured at time m and that measured at time n. 
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The fs ratio (fs)m/(fs)n is defined similarly. The qT and fs ratios between the sounding 

performed 40 hours after the blasting and that before the blasting are 0.9 and 0.8 

respectively. Both ratios are still in the range that can result from horizontal variability 

and equipment errors, because the qT ratio at the Walker site is between 0.76 and 1.31, 

and the fs ratio is between 0.67 and 1.49. However, they are at the lower end of the range. 

Considering that the soundings at this ESEE site are performed in a relatively smaller 

area than those at the Walker site, it is highly likely that the value of qT and fs dropped 

due to the simulated earthquake. The qT and fs ratios between the soundings performed 

229 days after the blasting and that 40 hours are well within the ranges of the ratios 

observed at the Walker site. Therefore, the changes in qT and fs in sand due to aging 

effects are not significant compared with that caused by horizontal soil variability and 

equipment errors. The qT and fs ratios between the sounding performed 229 days after the 

blasting and that before the blasting are also well within the possible ranges, and thereby 

hard to tell if the qT and fs have recovered to the level before blasting after 229 days.   

 
Table 7.7  Average CPT Measurements from 8m to 14m at ESEE Marked Tree, AR Site 

 
Sounding qT (MPa) fs (kPa) 

Before 25.12 196.54 
40 Hours After 22.87 157.54 
229 Days After 22.09 186.71 

 
 

Table 7.8  The Ratio between the Average CPT Measurements from 8m to 14m at ESEE 
Marked Tree, AR Site 

 
Ratio (qT)m/(qT)n (fs)m/(fs)n 

40 Hours After/Before 0.91 0.80 
229 Days After/Before 0.88 0.95 

229 Days After/40 Hours After 0.97 1.19 
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7.5.3  Test Results from Tennessee ESEE Site 

The ESEE Mooring site is located in Tiptonville, TN about 120km north of the Walker 

site. Figure 7.23 shows the SCPTu results collected at the Tiptonville site before blasting, 

as well as the interpreted soil profile. The soil profile consists of a sandy layer from 

ground surface to 4 m, and a clayey layer from 4 m to 9 m, underlain by a substantial 

sand layer from 9 m to 17 m. Figure 7.24 presents data at the Tiptonville site obtained 

approximately 2 hours after blasting, in comparison with data collected before blasting. 

Both the pre- and post-blasting data consist of some spikes in the upper and bottom sand 

layers, indicating the existence of some thin clayey lenses. In the depth range from 10 to 

16m, the immediate post-blasting measurements of qT, fs, and Vs show significant 

decreases compared with their corresponding pre-blasting value. Such decrease is also 

observed in the depth range from 2 to 4 m in the silty sandy layer.  

 

The seismic CPT measurements made at approximately 2 hours after, 20 hours after, and 

64 hours after blasting are compared in Figure 7.25. In the depth range from 11 to 14 m, 

the qT, fs, and Vs measured 20 hours after blasting showed significant increase over those 

measured 2 hours after blasting. However, the value of qT and fs measured 64 hours after 

blasting decreased to the same level as those measured 2 hours after blasting. (Note: Vs is 

not measured 64 hours after blasting). It is therefore suspected that the differences of the 

measurements in this irregular zone are caused by lateral horizontal variability, instead of 

aging effects. The measurements taken 229 days after blasting are compared with those 

taken 2 hours after and 20 hours after blasting in Figure 7.26. The value of qT and fs 

measured 229 days after blasting showed increased in the depth range from 11 to 17 m, 
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but it is probably caused by lateral variability. There are both increase and decrease in the 

value of Vs at different depth ranges (Figure 7.26). 
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Figure 7.23  SCPTu data and interpreted soil profile prior to ESEE Tiptonville, TN event 
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Figure 7.24  SCPTu data collected before and 2 hours after ESEE blasting event in 
Tiptonville, TN 
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Figure 7.25  SCPTu data collected 2 hours, 20 hours, and 64 hours after ESEE blasting 
event in Tiptonville, TN 
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Figure 7.26  SCPTu data collected 2 hours, 20 hours, and 229 days after ESEE blasting 
event in Tiptonville, TN 
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The average values of qT, fs, u2, FR, and Vs in a depth interval of every 1 m are calculated 

for the soundings performed after earthquakes, as shown in Figure 7.27. No evident nor 

consistent changes are observed between them, indicating that the aging effects on the 

CPT measurements are not particularly significant in these materials following the ESEE 

explosives-induced liquefaction.  
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Figure 7.27  Average SCPTu data of every 1 meter interval (Data collected before and 
after ESEE Tiptonville, TN event) 

 

7.6  Summary 

Age of sand may affect its penetration resistance and shear wave velocity profile, thus 

influence its behavior during large seismic events. Aging effects in sands is a complicated 

problem, and is suspected to be related to many factors, such as pore fluid, sand type, 

grain shape, relative density, and effective confining stress. Only a few systematic lab 

experiments have been performed to investigate aging effects, because of the time-

consuming nature of the experiments. Even among the few lab experiments, 

contradictory conclusions have been drawn by different researchers. For example, Joshi 
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et al. (1995) showed penetration resistance increased with time, whereas Baxtor & 

Mitchell (2004) did not. Although aging effects are observed in many field testing cases, 

the data are reported primarily from ground modification projects where the intention is 

to densify the soils. It appears that the influence of aging effects on soil strength and 

stiffness has to be site-specifically addressed. A hypothetical equation is proposed for 

estimating the behavior of cone tip resistance with time. Values of the parameters used in 

this equation are related to sand type, pore fluid, sand origin, and the method of 

destructuration. 

 

The Embayment Seismic Excitation Experiments (ESEE) provided an opportunity to 

research on the aging effects in the NMSZ. During the ESEE experiments, it is observed 

that the SCPTu measurements, including qT, fs, and Vs, just after the blasting were 

lowered to some extent in the liquefied zones. This observation is consistent with what 

are reported by many other researchers, such as Mitchell and Solymar (1984) and Stokoe 

and Santamarina (2000). This phenomenon caused a destructuration of the sand into a 

normally-consolidated state. However, in contrast to the significant time-dependent gain 

of strength reported for some sand sites previously (e.g. Schmertmann, 1991; Mitchell 

and Solymar, 1984; Mesri et al.; 1990), the SCPTu soundings from the ESEE 

experiments do not show significant or appreciable aging effects. This may be due in part 

to the freshwater environment, rounded to subrounded particle size of the quartz sands, 

and fairly significant inplace relative density. 
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CHAPTER VIII 
 
 

ESTIMATING SEISMIC PARAMETERS ASSOCIATED WITH 
PREVIOUS EARTHQUAKES BY SCPTU SOUNDINGS IN NMSZ 

 
 

8.1  Synopsis 

Upon liquefaction, saturated loose sands tend to flow upward and vent to the ground 

surface. Vented sand deposits that formed at the ground surface due to previous 

earthquakes in the NMSZ have been widely observed (e.g. Obermeier, 1998). Figure 8.1 

illustrates the tremendous extent of liquefaction caused by the 1811-1812 earthquakes. 

However, measured strain rates, which indicate how fast the lithosphere is being 

deformed during plate tectonic movement, in the NMSZ are relatively low (Newman et 

al., 1998). As a result, the recurrence interval of large earthquakes in NMSZ is relatively 

long, and is suggested to be hundreds of years (Tuttle & Schweig, 1995). Since even the 

most recent large earthquakes occurred nearly two hundred years ago, their surface 

traces, such as sand boils, subsidence, and dikes, have been modified by erosion, farming, 

vegetation, and other manifestations, thus making them very difficult to identify. 

Therefore, paleoliquefaction features, which are formed during past earthquakes and kept 

within the soil stratigraphy, are often used to analyze the previous seismic activities.  

 

The geological methodologies for paleoliquefaction studies include aerial photography, 

site reconnaissance, and site excavation. Sand blows appear as light colored patches in 

the field and have different impact on the plant growth from the surrounding soils, 

making them easy to be identified by aerial photos, despite the disturbance of topsoil by 
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agriculture practices (Tuttle & Barstow, 1996). It is usually assumed that sand blows of 

large size are located in the area where strong ground shaking occurs. However, 

liquefaction is triggered by the full or partial collapse of the sand-grain structure caused 

by the ground shaking during earthquakes. Then, the locally-liquefied material will cause 

stress redistribution in the surrounding soil mass, inducing larger scale liquefaction (Gu, 

et al., 1993). This process is not only related to the characteristics of earthquakes, but also 

the local site conditions, such as the layering and related soil properties. Evidence found 

from some recent earthquakes confirms that the distribution of liquefaction features can 

be irregular (Tuttle, 1999).  

 

Through reconnaissance along cutbanks of rivers or ditches, some of the 

paleoliquefaction features buried below the ground surface, such as sand dikes and sills, 

may be discovered. Information derived through aerial photos and reconnaissance is 

limited, and not sufficient for fully understanding the soil behavior during liquefaction. In 

order to investigate the liquefaction features in detail, some important paleoliquefaction 

sites have been carefully excavated to expose the buried sand structure and features, 

thereby allowing the liquefaction events to be radiocarbon-dated and the liquefaction 

mechanism to be better investigated. Nonetheless, the cost of site excavation is very high, 

limiting its widespread scale and use. Recently, geophysical methods, such as ground 

penetrating radar (GPR) (Liu & Li, 2001) and resistivity surveys (Barnes, 2000), have 

been used to identify the liquefaction and deformation features in the NMSZ. In addition, 

several geotechnical methods have been used in paleoliquefaction studies to back-

calculate the seismic parameters associated with previous earthquakes (e.g. Martin & 
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Clough, 1994; Pond, 1996). In this thesis, a new methodology for estimating these 

parameters has been proposed. It has been applied to the1989 Loma Prieta earthquake in 

California, as well as previous earthquakes that occurred in the NMSZ. 

 

 
 

Figure 8.1  Tremendous extent of liquefaction caused by the 1811-1812 earthquakes in 
the New Madrid Seismic Zone (Obermeier, 1998) 

 

8.2  Methods to Estimate Seismic Parameters  

A very important task of the paleoliquefaction studies is the estimation of seismic 

parameters associated with previous earthquakes. Obermeier & Pond (1999) and Tuttle 

(2001) summarized a number of techniques which can be used for back-calculating the 

degree of shaking and magnitudes of earthquakes from paleoliquefaction features. They 

include: (1) the simplified procedure based on the relationship between the peak ground 
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acceleration (PGA) and the penetration resistance of soils, typically the blow counts of 

the standard penetration test (SPT) (Seed et al., 1983, 1984, 1985) (Figure 8.2); (2) the 

cap thickness method based on the relation between the thickness of liquefied layer and 

the overlying non-liquefied cap for certain PGA (Ishihara, 1985) (Figure 8.3); (3) the 

liquefaction severity index (LSI) method based on the relationship between the LSI and 

the epicentral distance (Youd & Perkins, 1987); (4) the magnitude-bound method based 

on the relationship between the magnitude and the maximum epicentral distance of 

surface evidence of liquefaction (Ambraseys, 1988); (5) the energy-stress method based 

on the relation between the seismic energy intensity and penetration resistance of soils 

(Pond, 1996); and (6) the comparison approach that reconstructs the paleoearthquake 

event by comparing the paleoliquefaction features with those resulting from other 

earthquakes in the same region (Tuttle, 2001). 
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Figure 8.2  Boundary curve for discriminating occurrence and non-occurrence of 

liquefaction based on SPT blow counts (after Seed et al., 1984) 
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Figure 8.3  Boundary curves for site identification of surface effects of liquefaction 
(Ishihara, 1985) 

 

Using both the simplified procedure and the cap thickness method, Martin & Clough 

(1994) conducted research to estimate the seismic parameters associated with the large 

historic earthquake that occurred near Charleston, South Carolina in 1886. Field testing 

by SPT and CPT was performed at sites that experienced different degrees of liquefaction 

at different distances to the epicenter of the earthquake. It was assumed that at sites where 

liquefaction evidence was nonexistent, the peak ground acceleration (PGA) during the 

1886 earthquake did not exceed the threshold values, which could trigger liquefaction 

and thus formed the upper bound of the PGAs at these sites. At sites where liquefaction 
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evidence was marginal, the 1886 PGAs were taken approximately equal to the threshold 

values.  Based on SPT data collected in the field, Martin and Clough (1994) used the 

simplified procedure to derive a relationship between the PGA and the percentage of the 

liquefiable layer that would be susceptible to liquefaction. This process is conceptually 

illustrated in Figure 8.4. Assuming a certain threshold peak ground acceleration (amax), 

the critical (N1)60 value for liquefaction occurrence is back-calculated using the 

simplified procedure (Seed et al., 1971). It is then compared with the measured stress-

normalized SPT blow counts (N1)60 to determine the thickness of the liquefied layer in 

case of the assumed amax (Figure 8.4), thereby allowing the calculation of the percentage 

of layer liquefied. The thickness of the liquefied layer in the event of a certain amax can 

also be derived from Figure 8.3. The thickness of liquefiable layer can be derived 

corresponding to the thickness of the unliquefiable surface layer and the assumed peak 

ground acceleration (PGA), as illustrated by the arrows in this figure.  

 

As an example, Figure 8.5(a) shows the relationship between the PGA and percentage of 

layer liquefied for the Hollywood Site in Charleston, South Carolina, based on the criteria 

proposed by Seed et al. (1984) (Figure 8.2). The same relationship can be derived using 

the cap thickness method, as shown in Figure 8.5(b). The threshold acceleration that 

triggers liquefaction is the lowest value of PGA at which both methods agreed, and 

Figure 8.5(c) shows that the threshold acceleration for the Hollywood site is about 0.25g 

for an Mw = 7.5 earthquake.  
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The cap thickness method was developed from data collected from two major 

earthquakes in Japan and China (Ishihara, 1985). Thus, its validity for other earthquakes 

and other regions still needs to be justified. More recent analysis found the criteria are 

valid only for liquefaction sites that are not susceptible to ground oscillation or lateral 

spreading (Youd & Garris, 1995).  

0

1

2

3

4

5

6

0 10 20 30

(N1)60 (blow/ft)

D
ep

th
 (m

)

amax(g) = 0.1      0.2       0.3

Measured 
(N1)60

Critical (N1)60 for 
Liquefaction

Soil Profile

Medium black 
organic rich fine 

sand

Medium  fine 
sand

Medium  grey 
fine sand

Coarse grey fine 
sand

Clay

 
 

Figure 8.3  Conceptual illustration of the process in deriving the thickness of liquefiable 
layers in case of a certain peak ground acceleration (amax) 

 
Note: SPT data and soil profile are from the Hollywood site in Charleston, South 

Carolina (Martin & Clough, 1990) 
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Figure 8.5  Liquefaction analysis for the Hollywood site in Charleston, SC with an 
earthquake of Mw = 7.5 (after Martin & Clough, 1994): (a) Acceleration curve based on 

Seed et al. (1984); (b) Capping layer effect curve based on Ishihara (1985); (c) 
Superimposed plot showing threshold acceleration (Crossover Point) 
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The liquefaction severity index (LSI) method and the magnitude-bound method correlate 

the earthquake magnitude with its damage effect at a certain distance. Since the soil 

properties of the investigated sites are not considered, errors in these methods are 

inherent. Soils of different properties might behave significantly differently when 

subjected to the same type of earthquake vibration. Furthermore, they are based 

empirically on the interplate earthquakes that have occurred in the western USA, Japan, 

and China, but the geology and the tectonic setting in the NMSZ are quite different with 

intraplate events. Earthquakes of the same magnitude would result in liquefaction and 

related ground displacement at greater distances in the eastern North America than in the 

western North America, because of the lower attenuation for seismic energy in eastern 

North America (Youd et al., 1989).  

 

Although the magnitude-bound method has been calibrated for use in the central USA 

from paleoearthquakes in the Wabash Valley region of Indiana-Illinois (Obermeier et al., 

1993; Pond, 1996), further case studies are needed in order to verify it. Based on the 

relation between energy dissipation and the porewater pressure development during 

undrained cyclic loading of saturated sands, the energy-stress method is very similar to 

the simplified procedure, except it uses seismic energy instead of the PGA to evaluate the 

site’s susceptibility to liquefaction. Pond (1996) developed an energy model that 

estimates the seismic energy intensity at a site from the earthquake magnitude and 

hypocentral distance, but further verification is needed (Obermeier & Pond, 1999). 

Finally, the comparison approach is based on the geologic principle that the deposits and 

structures resulting from modern geologic processes are comparable to those from past 
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geologic events in the same region (Tuttle, 2001). Since the recurrence period of large 

earthquakes is long in the NMSZ, essentially no seismic events can be used as reference. 

Therefore, this method requires not only large amounts of work in finding and 

investigating the remnant liquefaction features, but also great expertise in analyzing and 

synthesizing the scantly available information to infer seismic parameters and data.  

 

By judging if the soil at a given site has liquefied or not during earthquakes, the 

simplified procedure relates the peak ground acceleration (PGA) with the soil properties, 

which are represented by penetration resistance of the field tests. Although this 

relationship is also based upon case histories collected outside of eastern North America, 

it focuses on the mechanical properties of soils under ground shaking, and therefore will 

be less sensitive to geologic and tectonic setting of the investigated region. The widely-

used SPT N-value has been used to provide an evaluation of the resistance of soils to 

liquefaction. However, the test is quite variable due to energy inefficiency amongst 

different drillers and equipment. As an alternative, the seismic cone penetration test 

(SCPTu) can provide better quality data. In addition, both normalized tip resistance (qT1) 

and shear wave velocity (Vs1) are obtained from the same sounding, and therefore allow 

for the independent assessments on liquefaction potential. The SCPT is best qualified to 

fulfill the task of paleoliquefaction analysis as the Vs profile obtained is also needed for 

evaluating site-specific ground shaking (i.e., CSR or amax = PGA) from amplification 

analysis. Hence, the SCPTu test is used herein to evaluate the seismic parameters 

associated with the previous earthquakes that occurred in NMSZ. 

 

283



8.3  Methodology for Estimating Seismic Parameters by SCPTu Test 

Existing correlations for evaluating liquefaction potential based on in-situ tests were 

developed almost exclusively from post-earthquake data (Chameau et al., 1991a; Olson et 

al., 2001). However, pre- and post-earthquake measurements can be significantly 

different, as discussed in Chapter 6. Since the existing liquefaction correlations are based 

on in-situ data measured after earthquakes, they are more appropriate for back-calculation 

of the seismic parameters associated with previous earthquakes. 

 

The seismic loading is typically expressed in terms of cyclic stress ratio (CSR) that 

represents the normalization of cyclic shear stresses to effective overburden stress (Seed 

& Idriss, 1971): 

d
vo

vo

vo

ave r
g

a
CSR ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== '

max
' 65.0

σ
σ

σ
τ

   (8-1) 

where amax is the peak ground acceleration (PGA) generated by the earthquake of interest, 

g is the acceleration of gravity, σvo and σ’vo are the total and effective vertical stresses 

respectively, and rd is a stress reduction coefficient that accounts for the flexibility of the 

model soil column.  

 

As mentioned in previous chapters, the cyclic resistance ratio (CRR) at the time when a 

previous earthquake occurred can be evaluated from either qT or Vs data, using the 

criteria proposed by Robertson & Wride (1998) and Andrus & Stokoe (2000), 

respectively. During an earthquake of moment magnitude Mw, the CRR of the site can be 

derived from the following equation: 
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CRR = MSF*CRR7.5      (8-2) 

where CRR7.5 is the cyclic resistance ratio of soils in the event of an earthquake with Mw 

= 7.5, and the moment scaling factor (MSF) represents the effect of duration of ground 

shaking resulted from earthquakes. The value of MSF decreases with the increase of the 

magnitude, for the duration of ground shaking increases with the earthquake magnitude. 

The relation of MSF with earthquake moment magnitude suggested by Youd et al. (2001) 

is used herein. 

 

During earthquake shaking of loose saturated sands, there is no likely liquefaction when 

CSR < CRR. Liquefaction occurs when CSR > CRR. Liquefaction is triggered and 

termed “marginal liquefaction”, when CSR = CRR. By substituting both Equation (8-1) 

and (8-2) into CSR = CRR, the minimum peak ground acceleration (PGA) that triggers 

liquefaction can be derived from the following equation: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′⋅
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

vo

vo

dr
CRRMSF

g
a

σ
σ

65.0
5.7

min

max    (8-3)  

Since the MSF decreases with earthquake magnitude, it is expected that the critical PGA 

or amax triggering liquefaction decreases with the increase of the earthquake magnitude. 

 

The PGA can alternatively be estimated through empirical attenuation correlations of amax 

with earthquake magnitude, distance from the seismic energy source, and local site 

conditions. By combining the peak acceleration attenuation relations for rocks motions 

with the amplification ratios at soft soil sites (i.e. the ratios of peak acceleration at a soft 

soil site divided by the corresponding peak accelerations at a nearby rock site), Idriss 
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(1991b) derived the following attenuation relations for estimating the peak acceleration at 

soft soil sites: 

For 6≤wM  

( ) ( ) ( )20)( 206.0285.1137.0673.1
max +−= −− RLneeaLn ww MM           (8-4 a) 

and, for 6>wM  

   ( ) ( ) ( )20)( 328.0015.2350.0952.2
max +−= −− RLneeaLn ww MM   (8-4 b) 

where amax is in g’s, Ln is the natural logarithm, Mw is the moment magnitude of the 

earthquake, and R is the hypocentral distance to the source in km. Idriss (1991b) 

suggested that the standard error associated with above equations is magnitude-dependent 

and can be estimated using the following equations: 

wM14.039.1 −=ε   for 25.7<wM     (8-5 a) 

38.0=ε           for 25.7≥wM     (8-5 b) 

Based on the estimated shear strength of soft soils under dynamic conditions, Idriss 

(1991b) also suggested that a maximum limiting value of 0.6 g can be applied to the PGA 

derived from the empirical correlations. Figure 8.6 shows the mean PGA and the mean ± 

one standard deviation of PGA versus the closest distance to the source in the event of an 

earthquake of moment magnitude 7.0. The PGA recorded at soft soil sites during the 

1989 Loma Prieta earthquake is also plotted in the figure, and it can be seen that 

equations suggested by Idriss (1991b) for calculating the mean PGA at soft soil sites 

provide a reasonable estimate of the recorded values during the 1989 Loma Prieta 

earthquake. 
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Figure 8.6  Comparison of peak ground acceleration of motions recorded during the 1989 
Loma Prieta earthquake at soft soil sites and those derived from the attenuation relations 

suggested by Idriss (1991b) 
 

For eastern North America, Boore & Joyner (1991) proposed the following equation to 

estimate the PGA, as discussed in Chapter 6:  

 

( ) ( ) ( ) RRMMMa 0022.0log6016.06037.06448.0672.0)log( 32
max −−−−−−−+=  (8-6) 

 

where amax is in g’s. This relationship can represent the average soil conditions in the 

Mississippi Embayment for moment magnitude ranging from 5 to 8.5 and hypocentral 

distances from 10 to 400 km (Boore & Joyner, 1991). The use of equation (8-6) for 

estimating PGA for different moment magnitudes is illustrated in Figure 8.7. The 

estimated PGA increases with the earthquake magnitude, and decreases with the 

hypocentral distance. 
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Figure 8.7  Estimated peak ground acceleration at ground surface of deep-soil sites in 
eastern north America (after Boore & Joyner, 1991) 

 

The critical PGA triggering liquefaction, which is derived through liquefaction 

evaluation, monotonically decreases with the magnitude, while the PGA calculated using 

the attenuation relations monotonically increases with the magnitude. The magnitude of 

an earthquake event and the threshold acceleration that triggers marginal liquefaction are 

the value of Mw and PGA at which both relations agree. Therefore, sites of marginal 

liquefaction have great significance to the paleoliquefaction studies, since marginal 

liquefaction indicates that the driving forces caused by earthquake are equal to the 

resisting strength of the soil (Stark, 2001). Because CRR can be derived from both qT and 

Vs, CSR and the PGA the sites have experienced can thus be back-calculated. During an 

earthquake event, the liquefied sites that have the greatest distance to the epicenter are 

also significant for estimating the seismic parameters. Generally, with the increase of 

distance to the epicenter, the driving force of the earthquake attenuates, and the extent of 
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the liquefied features decreases. When the distance exceeds the limit of the liquefaction 

field, no liquefied sites can be found. The liquefied sites that have the greatest distance to 

the epicenter are located close to the boundary of the liquefaction field. Therefore, it is 

reasonable to believe that the Mw and PGA that triggered liquefaction at these liquefied 

sites were not significantly higher than, if they were not close to, the Mw and critical PGA 

for this site to liquefy.  

 

8.4  Validation of the Methodology through 1989 Loma Prieta Earthquake 

In order to validate the methodology proposed above, the procedure is applied to back-

calculate the seismic parameters associated with the Loma Prieta earthquake that 

occurred on October 17, 1989. This earthquake resulted from a slip along a 45-kilometer 

segment of the San Andreas fault where it traverses the Santa Cruz Mountains. This 

earthquake is a moderate event with a moment magnitude Mw = 6.9 to 7.0, and its 

epicenter is located in the Santa Cruz Mountains, approximately 18 km from Santa Cruz 

and 96km south of San Francisco (Figure 8.8). Also shown in Figure 8.8 are the sites 

where liquefaction-induced damage occurred due to the 1989 Loma Prieta earthquake. 

 

8.4.1  Moss Landing Site 

During the 1989 Loma Prieta earthquake, extensive liquefaction occurred at several 

locations within the area of Moss Landing located on Monterey Bay in California. This 

area is underlain by Holocene alluvium with thickness up to 60 m, and the deposit is 

generally soft near the surface. Boulanger et al. (1997) suggested this area to be a soft soil 
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site. The numerical simulations performed by Woodward-Clyde (1990) and Mejia et al. 

(1992) suggest that the peak horizontal acceleration on a hypothetical rock outcrop at 

Moss Landing should be about 0.15g. Using the relationship proposed by Idriss (1991a) 

for amplification of peak horizontal accelerations on soft soils relative to rock, the peak 

horizontal acceleration at the Moss Landing area should be about 0.2 to 0.3 g, which is 

consistent with the level of damage to contents of buildings and with intensity of ground 

motions felt by people in the area (Boulanger et al., 1997).  

 

Slope inclinometers were installed along the shoreline edge of Moss Landing area prior 

to  the Loma Prieta earthquake, and readings were made before the earthquake in April 

and June 1989, as well as after the earthquake on November 30, 1989 (Harding, 1988). 

Lateral displacements were noticed during this time period, and they were attributed to 

the earthquake effects, since prior measurements and observation showed the shoreline 

slope was not deforming measurably. The deflection measured by one of the 

inclinometers is shown in Figure 8.9, along with data from a CPTu sounding performed 

1.5 m away from the inclinometer. The soil profile in this figure is interpreted by 

Boulanger et al. (1997) based on the CPTu signature and soil samples from an adjacent 

SPT boring performed 3.0 m away from the inclinometer. The primary deformation 

occurred between depths of about 2.0 and 4.5m, and the ground surface moved about 28 

cm to the east and 10 cm to the north. After analyzing the CPTu results and the index 

data of the soil samples, Boulanger et al. (1997) concluded that the deformations resulted 

from liquefaction in two sand layers which are located between the depths of 2.1 m to 3.6 

m and 4.2 m to 4.6 m, respectively.  
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Figure 8.8  Regional map of liquefaction-induced damage due to the 1989 Loma Prieta 
earthquake (after Seed et al., 1991) 
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Figure 8.10 shows the parameters derived from this CPTu sounding, which include the 

normalized tip resistance Q, the normalized friction ratio F, the normalized porewater 

pressure B, tip resistance corrected for overburden stress qc1N, soil behavior type index Ic, 

apparent fines content FC, correction factor for tip resistance Kc, equivalent clean sand 

normalized penetration resistance (qc1N)cs, and cyclic resistance ratio for Mw = 7.5 

CRR7.5. Assuming a certain magnitude, the critical PGA that can cause marginal 

liquefaction can be calculated using equation (8-3), and those based on qT of the sounding 

performed at Moss Landing are shown in Figure 8.11. The assumed magnitudes are from 

Mw = 5.5 to 8.0 taken in 0.5 steps, and for each assumed magnitude, the minimum critical 

PGAs are at the depth of 3.5m, 4.2m, and 4.5m, all of which are within the two sand 

layers that have been identified as having liquefied by Boulanger et al. (1997). The 

minimum critical PGAs are plotted versus the magnitude in Figure 8.12. These decrease 

with the increase of the magnitude, since the duration of ground shaking is usually longer 

for larger earthquakes, which requires a lower PGA to trigger liquefaction. Also plotted 

in Figure 8.12 is the attenuation relationship of the mean PGA and the mean PGA ± 1 

standard deviation versus the magnitude based on equation (8-4) and (8-5), with the 

knowledge that Moss Landing is about 25 km away from the epicenter of the earthquake 

(Figure 8.8). The minimum critical PGA curve meets the curve for mean PGA - standard 

deviation at the point of Mw = 6.95 and PGA = 0.19 g, while it meets the mean PGA + 

standard deviation at the point of Mw = 5.75 and PGA = 0.3 g. They indicate that in the 

event of marginal liquefaction at this site, the earthquake is likely of magnitude in the 

range from 5.75 to 6.95, and the PGA at this site is likely to be in the range from 0.19 g 

to 0.3 g. The data point corresponding to the mean values of these ranges is close to 
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crossover point of the minimum critical PGA curve and the attenuation relation curve for 

the mean PGA, which corresponds to Mw = 6.4 and PGA = 0.24 g.  
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Figure 8.10  Parameters and soil profile derived from the representative CPT sounding 
performed at Moss Landing, CA after the 1989 Loma Prieta earthquake  
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Figure 8.12  Relations between moment magnitude and critical peak ground acceleration 
triggering marginal liquefaction at the Moss Landing Site, superimposed with the 

attenuation relation 
 

Evidence has confirmed that the Moss Landing site is a liquefied site. It is of moderate 

distance to the epicenter among the liquefied sites as shown in the regional map of 

liquefaction-induced damage in Figure 8.8. Therefore, the Moss Landing site should have 

experienced CSR greater than CRR of the local soils, hence, greater PGA than the critical 

PGA that triggers marginal liquefaction. The Mw and PGA corresponding to the 

crossover point of the minimum critical PGA curve and the attenuation relation curve for 

the mean PGA (Figure 8.12) can serve as the mean of lower boundaries of the magnitude 

of the 1989 Loma Prieta earthquake and the PGA at this site has experienced during this 

event. Thus using the proposed methodology, the 1989 Loma Prieta earthquake is very 

likely to have a magnitude greater than 6.4, and the PGA at this site is very likely to be 

over 0.24 g. These estimations are consistent with the real magnitude (Mw = 6.9 to 7.0) of 
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the 1989 Loma Prieta earthquake and the PGA of 0.2 to 0.3 g at Moss Landing estimated 

by Boulanger et al. (1997).  

 

8.4.2  Yerba Buena Cove Site 

The Yerba Buena Cove (YBC) site is the primary work site during the study of 

liquefaction response of the fill soils along the waterfront area of San Francisco, CA after 

the 1989 Loma Prieta earthquake (Chameau et al., 1991a). Since the YBC site is one of 

the few liquefied sites that have the greatest distance to the epicenter (Figure 8.8), the 

PGA this site experienced during the earthquake should be close to the critical PGA that 

can trigger marginal liquefaction. Figure 8.13 presents the results of the CPTu sounding 

performed at the YBC site after the earthquake in March of 1990, as well as the soil 

profile interpreted by Chameau et al. (1991a). The YBC site consists of approximately 3 

m of gravel fill overlying a dune sand deposit of 5 m in thickness. The dune sand is 

underlain by a thick Bay mud layer, 18 to 21 m thick, which rests above the bedrock. 

 

Figure 8.14 presents the parameters that are derived from this CPTu sounding, and it can 

be seen that the dune sand layer has relatively low CRR7.5. The back-calculated critical 

PGA corresponding to earthquakes of assumed magnitudes ranging from 6.0 to 8.0 is 

presented in Figure 8.15, and the minimum critical PGA appears to be situated at about 

the depth of 6.6 m. Similar to the Moss Landing site, the minimum critical PGA is plotted 

against Mw in Figure 8.16, superimposed with the attenuation relations suggested by 

Idriss (1991b). The crossover points between the minimum critical PGA and the mean 
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PGA ± 1 standard deviation curves suggest that the Mw of the causative earthquake is 

likely to be in the range from 6.5 to 7.35, and the PGA the YBC experienced during the 

earthquake is in the range from 0.11 to 0.17 g. The Mw and PGA corresponding to the 

crossover point of the minimum critical PGA curve and the attenuation relationship for 

the mean PGA (Figure 8.16) can serve as the mean of the estimated Mw and PGA. Thus, 

using the proposed methodology, the 1989 Loma Prieta earthquake is very likely to have 

a magnitude around 6.95, and the PGA at this site is very likely to be 0.13 g. The 

estimated Mw is consistent with the real magnitude (Mw = 6.9 to 7.0) of the 1989 Loma 

Prieta earthquake. The estimated PGA is also close to the computed PGA, which is about 

0.17 g, based on numerical simulation carried out by Chameau et al. (1991b).  
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Figure 8.13  Representative CPT sounding performed at Yerba Buena Cove site located 
in San Francisco, CA after the 1989 Loma Prieta earthquake  

(data from Chameau et al., 1991b) 

298



0

2

4

6

8

10

12

14

16

18

0 100 200 300
Q

D
ep

th
 (m

)

0

2

4

6

8

10

12

14

16

18

0.00 0.05 0.10
F

0

2

4

6

8

10

12

14

16

18

-1.00 0.00 1.00 2.00 3.00
B

0

2

4

6

8

10

12

14

16

18

0 50 100 150
qc1N Soil Profile

0

2

4

6

8

10

12

14

16

18

Gravel Fill

Sand

Bay Mud

 

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4
Ic

D
ep

th
 (m

)

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50
Apparent FC (%)

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4
Kc

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200
(qc1N)cs

0

2

4

6

8

10

12

14

16

18

0.0 0.1 0.2 0.3 0.4 0.5
CRR7.5

 
 

Figure 8.14  Parameters the soil profile derived from the representative CPT sounding 
performed at Yerba Buena Cove site located in San Francisco, CA after the 1989 Loma 

Prieta earthquake 
 

The proposed methodology has been successfully applied to the Moss Landing site and 

the YBC site, both of which are the major sites where researchers investigated the 

liquefaction response of soils using CPTu tests, following the 1989 Loma Prieta 

earthquake. Based on the post-earthquake CPTu data from the Moss Landing site, the 

proposed methodology gives reasonable lower boundaries for the Mw of the earthquake 

and the PGA this site experienced during the earthquake. Using the CPT sounding 

performed at the YBC site after the earthquake, the Mw and the PGA derived from the 
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proposed methodology are close to the real values. Although Idriss (1991b) suggested 

significant standard deviation in the attenuation relations for soft soil sites, the use of the 

mean PGA in attenuation relations was successful in matching the estimated Mw with the 

real Mw of the earthquake. 
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Figure 8.15  Critical peak ground acceleration corresponding to earthquakes of different 
magnitude, based on tip resistance of the representative CPT sounding performed at 

Yerba Buena Cove site located in San Francisco, CA  
after the 1989 Loma Prieta earthquake 
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Figure 8.16  Relationship between moment magnitude and critical peak ground 
acceleration triggering marginal liquefaction at the Yerba Buena Cove site, superimposed 

with the attenuation relation 
 

 

8.5  Validation and Application of the Methodology in the NMSZ 

By observing the sedimentary characteristics of sand blows and large dikes in the NMSZ, 

Tuttle (1999) concluded that the liquefaction features found in the region resulted from a 

few very large earthquake events, instead of many smaller events. The large earthquakes 

of similar magnitude as those in 1811-1812 also occurred around 1450 AD, 900 AD, and 

490 AD (Tuttle, 1999). These earthquakes consisting of multiple individual earthquake 

events occurred a long time ago, when no seismograph records were yet available, thus 

making paleoliquefaction analysis more complicated in the NMSZ. 
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8.5.1  Wolf River Site 

The Wolf River site is a paleoliquefaction site (Broughton et al., 2001) located east of 

Memphis, TN, and north of Colliersville, TN, and situated on the north bank of the Wolf 

River. As shown in Figure 8.17, the distance between the Wolf River site and the 

epicenters associated with the three big earthquakes in 1811-1812 are R = 100 km, R = 

135 km, and R = 155 km, respectively. Figure 8.18 presents a more detailed map showing 

the location of the Wolf River site. 

 

At this location, CPT soundings were performed in areas having evidence of marginal 

liquefaction, as well as in non-liquefied areas (Obermeier, 2002). As shown in Figure 

8.19, seven soundings were performed at the Wolf River site. Soundings WOLF1 to 

WOLF4 were performed at sites where no liquefaction was observed, while WOLF5 to 

WOLF7 were at sites with only very small dikes extending upward into the overlying 

layers, which are the evidence of marginal liquefaction caused by the great New Madrid 

earthquakes of 1811-1812 (Van Arsdale, 1998). The soundings performed at sites of 

marginal liquefaction can be used to estimate the Mw of the earthquake and the PGA this 

site experienced. In addition, those CPTs that were performed at sites where there was no 

apparent liquefaction evidence provide a basis to estimate the upper boundaries of the Mw 

and PGA. 
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Figure 8.17  Map showing the epicenters of the 1811 -1812 earthquake events and their 

distance to the Wolf River site near Memphis, TN 
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Figure 8.18  Map showing the location of the Wolf River site in Memphis, Tennessee 
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Figure 8.19  Overview of the CPT Locations at Wolf River test site, TN 
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Figure 8.20 shows the SCPTu data for the sounding WOLF5. Apparently, two sand layers 

exist in the depth ranges from 3.5 m to 10.2 m and from 17 m to 28 m, for their measured 

porewater pressure u2 is close to the static porewater pressure u0 and their friction ratio 

FR is relatively low, around 2%. Figure 8.21 presents the parameters and soil profiles 

derived from this sounding, including the normalized shear wave velocity Vs1 and the 

CRR7.5 derived from shear wave velocity, as well as the soil profile based on cluster 

analysis and the soil classification chart proposed by Robertson (1990). The top 3 m of 

soil profile consists of fine-grained materials, underlain by an upper sand layer of about 7 

m in thickness, where the CRR7.5 derived from both qT and Vs are relatively low. Small 

sand dikes, which formed the evidence of marginal liquefaction at this site, were found to 

erupt from the underlying sand layer into the top layer.  
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Figure 8.20  Results of the sounding (WOLF5) performed along Wolf River, Memphis, 

Tennessee 
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Assuming earthquakes of different magnitudes ranging from Mw = 7.0 to 8.5, Figure 8.22 

shows the critical PGA that could trigger liquefaction at the corresponding depth based 

on qT and Vs. The minimum critical PGAs derived from both approaches are within the 

sand layer in the depth range from 3.5 to 10.2 m. Figure 8.23 plots the minimum critical 

PGA curves derived from qT and Vs, respectively. Since the distance from the epicenters 

to the Wolf River site is known, the attenuation relations suggested by Boore & Joyner 

(1991) for deep soil sites in eastern north America can also be plotted in Figure 8.23. 

Here, only the case for R = 100 km is plotted, for the attenuation relation curves with R = 

135 km and R = 155 km do not intersect the minimum critical PGA curve at reasonable 

magnitude. The minimum critical PGA curves intersect the attenuation relation curve for 

R =100 km at the magnitude of 8.2 and 8.3, and the corresponding PGAs are about 0.125 

g. It indicates that the marginal liquefaction features at this site are attributed to the 

December 16, 1811 earthquake event, which epicenter is 100 km away. The estimated 

Mw using the proposed methodology agrees with that suggested by Johnston (1996), who 

believed the December 16, 1811 earthquake event is of magnitude 8.1 ± 0.3 based on 

contemporary records of structure damage and human reaction. 
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Figure 8.22  Critical peak ground acceleration corresponding to earthquakes of different 
magnitude, based on the tip resistance and shear wave velocity of the WOLF5 sounding 

performed along Wolf River, Memphis, TN 
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Figure 8.23  Relations between moment magnitude and critical peak ground acceleration 
of possible previous earthquake triggering liquefaction at the WOLF5 site, superimposed 

with attenuation relations 
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The SCPTu sounding WOLF1 was performed where no apparent liquefaction evidence 

was found. Figure 8.24 presents the data from this sounding, and the measured porewater 

pressures u2 are significantly higher than the static porewater pressure u0 in the depth 

range from 14 to 19 m, indicating a clayey a layer. In the depth range from 4 to 14 m and 

from 19 to 24 m, the qT is relatively high, the u2 is close to the u0, and the FR is relatively 

low, indicating sandy layers. Figure 8.25 shows the parameters and soil profile derived 

from the sounding and the interpreted soil profile. The CRR7.5 derived from both qT and 

Vs suggest that the two thick sand layers as shown in the soil profile are most prone to 

liquefaction.  
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Figure 8.24  Data representation for the sounding (WOLF1) performed along Wolf 
River, Memphis, TN 
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Figure 8.26 shows the critical PGA in the event of earthquakes of different magnitudes 

from Mw = 7.0 to 8.5. The minimum critical PGA seems to be within the sand layer in the 

depth range from 19 to 24 m. Similar to the previous case studies, the minimum critical 

PGA curves are superimposed with the attenuation relation in Figure 8.27. Since only the 

attenuation relation curve with respect to R = 100 km intersects the minimum critical 

PGA curves at magnitudes in reasonable range, the other attenuation curves associated 

with R = 135 km and R = 155 km are not plotted in this figure. The two crossover points 

between the minimum critical PGA curves and the attenuation curve correspond to Mw = 

8.25, PGA =0.122 g and Mw = 8.4, PGA = 0.127 g, respectively. Because no liquefaction 

evidence was found at the location where this sounding was performed, the magnitudes 

and PGAs associated with the crossover points can serve as the upper boundaries of the 

real values. If the average value of the two crossover points is used, the upper boundaries 

for the Mw of the December 16, 1811 earthquake event is about 8.3 and that for the PGA 

of the Wolf River site is 0.125 g. The derived upper boundary of the Mw is also consistent 

reasonably well with the Mw suggested by Johnston (1996). 
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Figure 8.26  Critical peak ground acceleration corresponding to earthquakes of different 
magnitude, based on the tip resistance and shear wave velocity of the sounding (WOLF1) 

performed along Wolf River, Memphis, TN 
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Figure 8.27  Relationships between moment magnitude and critical peak ground 

acceleration of possible previous earthquake triggering liquefaction at the WOLF1 site, 
superimposed with attenuation relations 
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8.5.2  Walker Site 

The Walker paleoliquefaction site near Marked Tree, Arkansas has been discussed 

previously in Chapter 5. On the basis of radiocarbon dating and artifact analysis, the sand 

blows and related dikes at this site can be attributed to the large New Madrid earthquakes 

that occurred in circa 1530 A.D.. Although the full extent of the 1530 A.D. liquefaction 

field has not yet been determined, this is the southernmost known occurrence of sand 

blows of this age. Therefore, the estimated Mw and PGA based on this site should be 

close to the real values.   

 

Figure 6.22 in Chapter 6 has shown the magnitude and interpreted liquefaction fields for 

two seismic events circa 1530 A.D.. The epicenters of the corresponding earthquakes are 

assumed to be located at the centers of the liquefaction fields. The Walker site is 

approximately is 73 km and 110 km to the estimated epicenters of the two A.D. 1450 

events, which were estimated to be of magnitude 7.6 and 8.0, respectively, by Tuttle 

(1999) based on the comparison of liquefaction features caused by previous and modern 

earthquakes. 

 

Figure 4.20 in Chapter 4 presented the data from a representative SCPTu sounding 

(MTREE01) advanced to a depth of 32 meters at the Walker site, as well as the derived 

parameters and soil profile. From the back-calculated critical PGA based on qT and Vs 

(Figure 8.28), the minimum value occurs around the depth range from 18 to 20 m. The 

minimum critical PGA curves and the attenuation relation for R = 73 km are 

superimposed in Figure 8.29, and the crossover points indicate Mw =  7.6 and PGA = 0.16 
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g. The attenuation relation for R = 110 km is not shown in this figure, for it does not 

intersect the minimum critical PGA curve at reasonable magnitude. Therefore, the 

liquefaction features at the Walker site was likely caused by the earthquake event which 

epicenter is 73 km away. Notably, the estimated magnitude by the proposed methodology 

agrees well with that suggested by Tuttle (1999). 
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Figure 8.28  Critical peak ground acceleration corresponding to earthquakes of different 
magnitude, based on the tip resistance and Vs profile from SCPTu sounding MTREE01 
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Figure 8.29  Relationship between moment magnitude and PGA of possible previous 
earthquake triggering liquefaction at the Walker site based on the MTREE1 sounding, 

superimposed with attenuation relations 

 

8.5.3  Hillhouse Site 

The Hillhouse paleoliquefaction site located at Wyatt, MO has also been discussed 

previously in Chapter 5. According to radiocarbon dating of the deposits and analysis of 

artifacts found at this site, the liquefaction features are formed during the 900 A.D. 

earthquakes (Tuttle, 1999), and it is the most northern site that has found liquefaction 

features attributed to the 900 A.D. earthquakes. These facts indicate that the CSR was 

probably only slightly higher than the CRR at this site when the liquefaction features 

were formed around 900 A.D.. 
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As shown in Figure 6.36 in Chapter 6, the 900 A.D. earthquakes consist of three 

individual earthquake events with the magnitudes of 8.1, 8.0, and 7.6. The Hillhouse site 

is 65, 80, and 148 km away from the estimated epicenters. Figure 6.34 and 6.35 in 

Chapter 6 have shown the results of a SCPTu sounding performed at this site, as well as 

the derived parameters and the interpreted soil profile.  

 

The critical PGAs derived from both qT and Vs are presented in Figure 8.30, and the 

minimum critical PGA occurs around the depth of 20 m. Figure 8.31 (a) and (b) shows 

the minimum critical PGA curves superimposed with the attenuation relations for R = 65 

km and R = 80 km, respectively. The attenuation relation for R = 148 km does not 

intersect the minimum critical PGA curve at reasonable magnitude, and thus is not shown 

here. The crossover points in both Figure 8.31 (a) and (b) indicate that the liquefaction 

features could possibly be caused by either or both of the earthquake events which 

epicenters are 65 km and 80 km away. For the earthquake with R = 80 km, the estimated 

Mw = 7.9, which agrees well with the Mw = 8.0 suggested by Tuttle (1999). However, for 

the earthquake with R = 65 km, the estimated Mw = 7.55, which is lower than the Mw = 

8.1 suggested by Tuttle (1999). The difference between the estimated magnitudes might 

be attributed to that the fact that a 10-m thick unliquefiable layer is on top the liquefiable 

sand layer at this site (Figures 6.34 and 6.35 in Chapter 6). Because of the cap effect of 

the unliquefiable layer, extra seismic loading was required to form liquefaction features, 

such sand blow and sand dikes. 

 

 

316



Critical amax from qT

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4
(g)

D
ep

th
 (m

)

Based on qT
Based on Vs

Mw = 7.0

Minimum 
Critical amax

Critical amax from qT

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4
(g)

Mw = 7.5

Minimum 
Critical amax

Critical amax from qT

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4
(g)

Mw = 8.0

Minimum 
Critical amax

Critical amax from qT

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4
(g)

Mw = 8.5

Minimum 
Critical amax

 
 

Figure 8.30  Critical peak ground acceleration corresponding to earthquakes of different 
magnitude, based on the tip resistance and Vs profile from the representative SCPT 

sounding performed at Hillhouse paleoliquefaction site in Wyatt, Missouri 
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(b) 

 
Figure 8.31  Relationship between moment magnitude and PGA of possible previous 

earthquake triggering liquefaction at the Hillhouse site in Wyatt, Missouri, superimposed 
with the attenuation relations: (a) R = 65 km; (b) R = 80 km. 
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8.6  Summary 

Due to the relatively long recurrence interval of large earthquakes in the NMSZ, the 

historic and pre-historic earthquakes, especially the liquefaction features resulting from 

these earthquakes, are often used to extend our understanding of the seismic activities in 

this region. The lack of seismograph readings from the last large events in 1811-1812 

compounds the problem. Some geotechnical methods, such as the simplified procedure 

based on in-situ data, have been proven very useful for estimating the seismic parameters 

associated with previous earthquakes. 

 

Criteria have been developed to evaluate the capacity of the soil to resist liquefaction (i.e. 

CRR) based separately on the cone tip resistance qT or shear wave velocity Vs. Since all 

the test data used in developing the criteria are collected after the corresponding 

earthquakes, the criteria are more appropriate for estimating the seismic parameters 

associated with previous earthquakes.  

 

A new methodology is proposed to estimate the seismic parameters (moment magnitude 

Mw and peak ground acceleration PGA) associated with previous earthquakes, using the 

simplified procedure based on SCPTu data and the attenuation relationships developed 

for the corresponding seismic areas. This methodology is initially validated through the 

paleoliquefaction studies at two sites associated with the 1989 Loma Prieta earthquake 

(Moss Landing and Yueba Puena Cove). After verification, the procedures are applied to 

estimate the Mw and PGA for the major previous earthquakes in the NMSZ. Three sites 

are constrained: Wolf River site, TN (1811 – 1812 events); Walker site, AR (1530 A.D. 

events), and Hillhouse site, MO (900 A.D. events). Although the methodology is 
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theoretically simple, the estimated earthquake magnitudes and associated PGAs agree 

quite well with the records and values estimated by other methods. 
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CHAPTER IX  
 
 

CONCLUSIONS AND RECOMMENDATIONS FOR  
FURTHER STUDIES 

 
 

9.1 Conclusions 

The SCPTu is an efficient way to assess soil stratigraphy, soil properties, and liquefaction 

potential in seismically active areas. In this thesis, software tools were developed to 

automate post-processing of SCPTu data, and new methods were proposed for soil 

stratification and classification, liquefaction evaluation, and paleoliquefaction studies. 

They have been applied to the series of cone penetration tests performed in the NMSZ. 

 

The in-situ shear wave velocity Vs provides the small-strain moduli (Gmax), which is 

required for both site amplification analyses and soil liquefaction studies. In this thesis, 

the cross-correlation method and the phase-shift method are discussed and applied to 

derive Vs from downhole test. Both methods can be implemented on computer, and can 

obtain Vs more accurately and much faster than the first arrival and cross-over methods, 

which are presently done manually in engineering practice. Compared with the cross-

correlation method, the phase-shift method requires some degree of subjective judgment 

from the user. The software (ShearPro) utilizes the cross-correlation method to automate 

the process of deriving Vs. After data files of shear wave signals are loaded into 

ShearPro, it outputs the derived Vs and corresponding coefficient of determination r2 that 

indicates the quality of cross-correlation between signals. 
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Cluster analysis is an efficient statistical way to analyze the stratigraphic vertical 

profiling of geomaterials. In this thesis, the constraints of the two-channel approach 

proposed by Hegazy & Mayne (2002) are analyzed, and a new three-dimensional cluster 

analysis approach is developed based on three channels of data including tip resistance, 

sleeve friction, and porewater pressure. The applicability to soil formations of clay, silt, 

and sand is now generalized.  

 

A new algorithm for cluster analysis on CPTu data is proposed, which simplifies the 

computation procedure, as well as provides physical meaning to the clustering. It can 

detect the depth of soil boundaries, layers, and sublayers, as well as the systematic errors 

and random outliers. The method is also capable of detecting soil lenses, seams, 

transitions, as well as important changes within the stratigraphy. Current CPT soil 

behavioral charts (e.g., Robertson et al., 1986; Robertson, 1990) often exhibit conflicts 

between the Q ~ F domain and Q ~ B domain. In a number of cases, CPT service 

companies rely solely on the Q ~ F charts and have incorrectly identified stiff clays as 

“sand”. A three-dimensional soil classification chart that gives consistent classification 

results is proposed in this thesis to avoid these difficulties. Illustrative soil profiles from 

real examples derived by the three-channel cluster analysis and the three-dimensional soil 

classification chart agree well with soil boring data and available lab testing.  

 

Various soil parameters can be inferred from SCPTu data, based on interpretative 

correlations. The software (InSituData) is developed in this thesis to automate this 

process. It can derive parameters based on the correlations recommended and 
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implemented by the author, as well as on the user-defined equations. This software can 

also visualize the parameters in charts similar to those in EXCEL. Both the data and 

charts can be exported to an EXCEL spreadsheet. Compared with other available 

software, this software has a friendly user interface, and gives more flexibility to users in 

processing the SCPTu data. 

 

Geotechnical site characterization using seismic cone penetration tests (SCPTu) in the 

New Madrid Seismic Zone (NMSZ) serves multiple purposes, including: (1) identifying 

soils with high potential to liquefaction; (2) providing data for site-amplification analysis; 

and (3) obtaining information for ongoing paleoliquefaction studies. The data collected 

by the SCPTu sounding can be processed to give the soil stratigraphy and a direct 

liquefaction evaluation of test sites. In this thesis, the cyclic stress ratio (CSR) is derived 

using both the simplified stress-based procedure (e.g., Seed & Idriss, 1971) and the 

program DEEPSOIL (Park & Hashash, 2004). For the DEEPSOIL procedure, the 

bedrock motion at a specific site is generated using the program SMSIM (Boore, 2002), 

and DEEPSOIL simulates the propagation of the shear waves from the bedrock to ground 

surface. The cyclic resistance ratios (CRR) calculated from the tip resistance qT and shear 

wave velocity Vs can both be used for the liquefaction evaluation at a single site. The 

redundancy information provides a higher level of confidence in conclusions. Both the 

deterministic and probabilistic approaches of liquefaction analysis are now available, and 

are used to detect zones susceptible to liquefaction. Based on the analysis of the 

liquefaction zones at these paleoliquefaction sites, regional liquefaction criteria for the 

NMSZ have been developed. Comparison between the newly developed criteria and 

323



those suggested by other researchers show that the soils in the NMSZ are more prone to 

liquefaction upon the same seismic loading. 

 

Existing correlations to evaluate liquefaction susceptibility based on in-situ tests were 

developed almost exclusively from data measured post-earthquakes. However, only pre-

earthquake data are available to evaluate the liquefaction susceptibility during future 

earthquakes. The pre- and post-earthquake data might be significantly affected by 

liquefaction and aging effects. In order to find out these influences, SCPTu tests were 

performed before and after simulated earthquakes in the NMSZ. Blast-induced 

liquefaction was observed in some sand zones, where qT, fs, and Vs were significantly 

lowered by the induced-liquefaction. However, subsequent CPT soundings showed no 

significant aging effects at these test sites. 

 

Since almost all the field test data used in developing the liquefaction criteria are 

collected after the corresponding earthquakes, the criteria are more appropriate to 

estimate the seismic parameters associated with previous earthquakes. A new 

methodology is proposed in this thesis to estimate the seismic parameters associated with 

previous earthquakes, using the simplified procedure based on SCPTu data and the 

attenuation relationship developed for corresponding seismic areas. This methodology is 

validated through two paleoliquefaction studies from the 1989 Loma Prieta earthquake 

and then applied to the major previous earthquakes in the NMSZ. The estimated 

earthquake magnitude and peak ground acceleration (PGA) agree quite well with the 

records and those suggested by other methods. 
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9.2  Recommendations for Further Studies 

As computer software, ShearPro, ClusterPro, and InSituData can always be improved. In 

this thesis, effort is put in developing user-friendly interfaces, but additional features can 

be added in the interface to make them more convenient to use. In ShearPro, print 

options can be added to enable printing out the filtered/unfiltered shear wave trains and 

graph of Vs versus depth. For the current version of InSituData, the data column names 

and settings of plots have only one default option. The users would have more flexibility 

and convenience, if more options can be saved. Additional correlations can be added to 

the software, and then the user would be able to choose from the recommended 

correlations to derive parameters. 

 

Clustering is a very promising technique for soil stratification based on in-situ data. Three 

channels of CPTu data are used in the three-dimensional cluster analysis discussed 

herein. There is the possibility that cluster analysis could be expanded to more channels 

of data, such as for use in four-channel resistivity soundings (RCPTu), seismic soundings 

(SCPTu), and other tests. 

 

Regional liquefaction criteria for the NMSZ have been developed from analysis of the 

SCPTu data collected at the paleoliquefaction sites in this region. These empirical criteria 

can be refined through more case studies. Its correctness can be verified through 

earthquakes in the future. Although the recurrence interval of large earthquakes is long, 

small earthquakes occur quite often in the NMSZ, which may provide opportunities for 

the verification. 
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No obvious aging effects were observed from the blast-induced liquefaction experiments 

in the NMSZ during the time of 229 days. More tests at the tests sites may substantiate 

the conclusion. Since aging effects are indeed observed during some laboratory tests and 

ground improvement projects, future work can concentrate on finding the difference 

between these sites, which might be associated with aging effects. A hypothetical 

equation is proposed for estimating the behavior of cone tip resistance with time. Values 

of the parameters used in this equation need to be calibrated through case studies.  

 

A new methodology has been proposed to estimate the seismic parameters associated 

with previous earthquake. Since it is based on empirical methods for liquefaction 

evaluation and ground motion attenuation, more case studies in the future would be 

helpful in refining this methodology.  
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APPENDIX A 
 
 

NEW MADRID SEISMIC ZONE 
 
 

A.1  Introduction 

As the most extensive seismic region in the eastern United States, the New Madrid 

Seismic Zone (NMSZ) is located within the central Mississippi Valley, covering 

northeast Arkansas, western Tennessee, southeast Missouri, western Kentucky, and 

southern Illinois (Figure A.1). During 1811 and 1812, three largest earthquake events 

occurred in this region, and they are estimated to have moment magnitudes of 8.1, 7.8, 

and 8.0 (Johnston, 1996). Their dates of occurrence and epicenter locations are listed in 

Table A.1. 

 
Table A.1  Occurring date, estimated magnitude, and epicenter of the three largest events 

during the 1811-1812 earthquake sequence (Nuttli, 1979; Johnston, 1996) 

 

Occurring 
Date 

Magnitude Epicenter 

16 Dec 1811 M 8.1 ±  0.3 Northwest of Blytheville, Arkansas 

23 Jan 1812 M 7.8 ±  0.3 North of Caruthersville, Missouri 

07 Feb 1812 M 8.0 ±  0.3 Southwest of New Madrid, Missouri 

 

The New Madrid seismic zone is named after the town of New Madrid, Missouri, which 

is the closest town to the epicenters of these earthquakes. Another two major earthquakes 

occurred on January 4, 1843 and October 31, 1895, and they were estimated to both have 

moment magnitude over 6.0 (Johnston & Schweig, 1996). 
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The New Madrid Seismic Zone (NMSZ) is located within the North America tectonic 

plate. Although it is not situated at a plate boundary, it is the most prominent intraplate 

seismic zone within the North America plate. The seismic activities occur primarily along 

the New Madrid fault system (Figure A.1), which consists of three legs, and has been 

identified as a left-stepping, right-lateral strike-slip fault zone (Schweig & Van Arsdale, 

1996). On average, more than 200 earthquake events are located in the fault zone 

annually, most of which are too small to be felt (moment magnitude Mw < 2.5), but every 

18 months or so, the fault releases a shock that is capable of local minor damage (Mw > 

4.0) (http://www2.semo.edu/ces/CES2.HTML).  

: Epicenter of the major events during 1811 and 1812

+ : Location of seismicity from 1974 to 1991

2/7/1812

1/23/1812

12/16/1811

: Epicenter of the major events during 1811 and 1812

+ : Location of seismicity from 1974 to 1991

2/7/1812

1/23/1812

12/16/1811

 
 
Figure A.1  The fault in the New Madrid Seismic Zone (Schweig & Van Arsdale, 1996) 
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In 1811-1812, there were very few residents and man-made structures in the New Madrid 

Seismic Zone (NMSZ), whereas nowadays this region has become home to millions of 

people and includes several big cities, such as Memphis, Tennessee and St. Louis, 

Missouri. Recent studies and educational campaigns have led to the public awareness on 

the inevitable recurrence of these significant seismic events and subsequent loss of life 

and damage. Research has shown that there is a 90% probability for a magnitude 6 to 7 

earthquake to occur within the next 50 years (Schweig et. al., 1995).  

 

Compared with even the 1994 Northridge, California earthquake that exhibited a moment 

magnitude of 6.7, the 1895 earthquake in NMSZ with a moment magnitude of only 6 

affected a much larger area of the USA, as shown in Figure A.2, because of the different 

geology east and west of the USA (Filson et al., 2003). Since the Northridge, California 

earthquake killed 67 people and caused $40 billion of property destruction, it is expected 

that the effects of an earthquake with the same magnitude in the NMSZ could be far 

worse (Filson et al., 2003). Efforts are definitely necessary for evaluating the level of 

seismic hazards in this area in order to help protect the life and property.  

 

Recent studies have uncovered that wide-spread liquefaction features in the NMSZ, such 

as sand blows and sand dikes (Obermeier, 1998; Tuttle, 1999). They resulted from 

previous earthquakes in this region. Upon liquefaction, the underground sands may erupt 

to the ground surface and redeposit as sand blows (Figure A.3). Sand blows are 

connected to sand dikes, which are sediment-filled cracks through which sand and water 

flowed. Sand sills are the sand deposits intruded below layer of low permeability, and 
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they usually take the form of lenses that are connected to sand dikes (Tuttle, 1999). Since 

even the most recent large earthquakes occurred nearly two hundred years ago in the 

NMSZ, their surface traces, such as sand boils, subsidence, and dikes, have been 

modified by erosion, farming, vegetation, and other manifestations. Thus, they are very 

difficult to identify except at special pristine and undisturbed location. Therefore, 

paleoliquefaction features as shown in Figure A.4, which are formed during the past 

earthquakes and kept in the soil stratigraphy, are often used to analyze the previous 

seismic activities, such as their magnitudes, location of epicenters, as well as peak ground 

acceleration (PGA) at specific sites. 

 

 
 

Figure A.2  Areas affected by earthquakes in the USA (Filson et al., 2003) 
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Figure A.3  Schematic cross section of sand blow and related liquefaction features 
(Obermeier and Pond, 1999): A:  Sand dike with sand blow on the surface;  B:  dikes that 

pinch together as liquefied soil flow upwards; C:  dike characteristics often associated 
with fractured zone of weathering that develops in highly plastic clays. 

 

One important issue is the historic fact that sites that have experienced liquefaction 

during a prior earthquake event will likely liquefy again in subsequent ground shaking 

events of similar magnitude (Youd, 1988; Yasuda & Tohno, 1988). Seismic cone 

penetration tests (SCPTu) were performed in the NMSZ to evaluate the liquefaction 

potential over the large developed urban, suburban, and rural regions in this region. Many 

of the proposed measures discussed herein could also be applied to advantage in other 

seismic areas of the world.  
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   (a)     (b) 

   
(c) (d) 
 

Figure A.4  Photos of liquefaction features in the field (Obermeier, 1998): (a) Vertical 
section showing vented sand (white sand) with feeder dike; (b) Typical small dike in 

vertical section; (c) Typical sill that is parallel to the ground surface and is as much as 10 
cm thick; (d) The white sand is a thick, dome-shaped sill between blue clay beds 

 

A.2  Test Sites in the New Madrid Seismic Zone 

Previously, cone penetration tests (CPT) and seismic cone penetration tests (SCPTu) have 

been performed by Hryciw (1992) and Schneider (1999) in the NMSZ. Figure A.5 shows 

locations of CPT, SCPT, and dilatometer test (DMT) tests performed in the heart of the 

NMSZ by Hryciw (1992), and the analysis results showed that the stress-normalized tip 

resistance (qT1) and stress-normalized shear wave velocity (Vs1) generally decrease with 

the extent of the paleoliquefaction features found around the sites.  
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Figure A.5  Locations of CPT, SCPT, and DMT tests performed by Hryciw (1992) 
Note: The black triangles represent the test locations. 

 

Since 1998, more cone penetration tests were conducted for the purpose of mapping 

seismic ground hazards and soil properties in the NMSZ. Field programs have been 

completed at sites previously mapped by researchers working with the U.S. Geological 

Survey (USGS), Mid-America Earthquake Center (MAEC), and Center for Earthquake 
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Research & Information (CERI). Figure A.6 shows the location of the CPT soundings 

that have been performed in this area since 1998. The tests before 2000 were performed 

by Schneider (1999), and the results have been discussed in Schneider & Mayne (2000) 

and Schneider et al. (2001). The test sites can be classified into two categories: 

paleoliquefaction sites where evidence of prior liquefaction has been found, and non-

paleoliquefaction sites where no apparent liquefaction evidence has been observed. Most 

of the paleoliquefaction sites were mapped by Tuttle (1999) and Tuttle et al. (1999, 

2000). Appendix B summarizes all the soundings that are performed at the 

paleoliquefaction sites. Tests are performed at the non-paliqoliquefaction sites for various 

purposes, and they are summarized in Appendix C. Although the CPT tests performed at 

both kinds of sites can help predict the liquefaction response of the soils in future 

earthquakes, those performed at the paleoliquefaction sites can also be useful for the 

research in paleoseismology, which is to study the earthquake effects currently preserved 

in the geologic record in order to extend our knowledge and enhance our understanding 

of seismic activities (Tuttle, 2001).  
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Figure A.6  Representative CPT locations in New Madrid Seismic Zone 
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APPENDIX B 
 
 

PALEOLIQUEFACTION TEST SITES IN NMSZ 
 
 

Table B.1 summarizes the cone penetration soundings performed at paleoliquefaction 

sites in the NMSZ since 1998, including test dates, location and coordinates of the test 

sites, penetration depth, ground water table, and the sounding type. The tests before 2000 

were performed by Schneider (1999). The paleoliquefaction features for most of the test 

sites are summarized in Tuttle (1999) and Tuttle et al. (1999, 2000). Each of these test 

sites will be introduced in the following sub-sections, including paleoliquefaction 

features, test location, test results, as well as inferred soil parameters. 

 

B.1  Shelby Farms Paleoliquefaction Site 

The Shelby Farms site located in Memphis, TN (Figure B.1) contains a sand dike mapped 

by researchers from the University of Memphis (Broughton et al., 2001). Although it is 

believed that the sand dike was originated from the New Madrid earthquakes, the exact 

time when it was formed is unknown (Schneider, 1999). A SCPTu sounding was 

performed approximately 20 m from the sand dike. An aerial photo showing the location 

of the SCPTu sounding is presented in Figure B.2. The results of this 31-m deep 

sounding and the inferred soil parameters are shown in Figure B.3. 

 

B.2  Yarbro Excavation Paleoliquefaction Site 

Yarbro excavation is a large borrow pit located north of Blytheville (Figure B.4), and its 

aerial photo is presented in Figure B.5. Liquefaction features have been exposed in walls 
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of the borrow pit, as well as in walls of islands within the pit. Tuttle (1999) presented the 

liquefaction features at locations Y1, Y2, and Y3 in the borrow pit. Sand blow and related 

dikes and sills were exposed at location Y1 (Figure B.6). The sand blow is about 35 cm 

thick and 3.8 m in width. It consists of medium and fine sand, underlying laminated silt 

and surrounding the based of a dead tree. The wall at location Y2 exposed a portion of a 

very large sand blow, which is estimated to be at least 75 m wide and 140 m in length 

(Figure B.7). As exposed on this wall, the sand blow is up to 55 cm thick and composed 

of layers of silty sand, fine sand, and medium sand. Figure B.8 shows a photo of the wall 

at location Y3, where two stacked sand blows were exposed. The lower sand blow 

composed of medium sand is about 30 cm thick and of limited lateral extent. The upper 

sand blow is about 2 m thick, and consists of layers of silty sand, fine sand, and medium 

sand.  

 

Calibrated dates are yielded from radiocarbon-dating of organic materials and soil 

samples from these locations, and they are with the logging figures. Based on the dating 

information, Tuttle (1999) suggested that the 1530 event led to the formation of moderate 

size liquefaction features, and the 1811-1812 events caused the formation of very large 

liquefaction features, the extrusion of more than 20,000 m3 of sand, which is now being 

removed from the excavation pit for use in construction. A SCPTu sounding was 

performed close to the excavation pit, as shown in Figure B.5. The results of this 

sounding and the inferred soil parameters are shown in Figure B.9. 

 

 

337



B.3  Bugg Site 

The Bugg site is located north of Blytheville, Arkansas and very close to the Yarbro 

excavation site (Figure B.4). A 65 m-long trench exposed sand blow and related sand 

dikes at this site, as shown in Figure B.10. The sand blow is up to 1.1 m thick, and 

composed of a layer of fine sand overlain by medium sand. Archeological investigation 

and radiocarbon dating lead to the interpretation that the sand blow at this site is 

attributed to the 900 A.D. earthquakes (Tuttle, 1999).  

 

Two SCPTu soundings were performed at this site, as shown in Figure B.11. The first 

(BUGG01) was adjacent to the exposed liquefaction feature, and the second (BUGG02) 

was located in an area of no liquefaction features. Figure B.12 and B.13 show the results 

and inferred soil parameters from these two soundings, respectively.  

 

B.4  Dodd Farm Site 

The Dodd Farm site is located southwest of Caruthersville, Missouri, and north of Steele, 

Missouri (Figure B.14). A trench was excavated across a sand blow at this site, and its 

logging is shown in Figure B.15. The sand bow deposit is at least 14 m across and up to 1 

m thick, consisting of layers of coarse, medium, and silty find sand. The two sand dikes 

are 5 m and 1.2 m wide. Radiocarbon dating and archeological analysis indicate that 

liquefaction features at this site are probably formed between 1400 AD and 1670 AD, 

and likely to be attributed to the 1530 AD earthquakes (Tuttle, 1999). 
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Three cone penetration soundings were performed at this site, as shown in Figure B.16. 

Results from two SCPTu sounding and the inferred soil parameters are shown in Figure 

B.17 and B.18. 

 

B.5  3MS617 Site 

The 3MS617 site is located northeast of Blytheville, Arkansas, and close to the Hueys 

site (Figure B.4). An archeological dig was underway at the time when cone penetration 

tests were performed at this site. Trenches were being mapped, and artifacts were being 

collected for ongoing dating process. Three soundings were performed adjacent to an 

uncovered sand blow that is approximately 1-meter wide (Schneider, 1999), and their 

locations are shown in Figure B.19. Results of the SCPTu sounding (3MS617-A) and the 

inferred soil parameters are presented in Figure B.20. 

 

B.6  Johnson Farm Site 

The Johnson Farm site is located southwest of Caruthersville, Missouri and north of 

Steele Missouri (Figure B.14). Two perpendicular and intersecting trenches were 

excavated in the sand blow at this site. The east-west oriented trench was 68 m long, and 

its logging is presented in Figure B.21. The main dike shown in this figure is about 47 cm 

wide, and consists of medium to fine sand. The sand blow close to the dike is about 25 

cm thick, and composed of fine sand. The north-south oriented trench was 18 m long, 

intersecting the other trench at its western end. Logging of this trench (Figure B.22) 

shows a sand blow deposit up to 1 m thick over a feeder dike of 32 cm in width. The sand 

blow is composed of silty, very fine sand overlain by medium to coarse sand, and the 
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dike consists of silty, very fine sand. Information from radiocarbon dating and 

archeological study suggests that the sand blow may have formed between 800 A.D. and 

1000 A.D., likely to be attributed to the 900 A.D. earthquakes (Tuttle, 1999). 

 

One SCPTu sounding was performed close to the intersection of the two trenches, and its 

location is shown in Figure B.23. Results of this sounding and the inferred parameters are 

presented in Figure B.24. 

 

B.7  Hueys Site 

Hueys site is located north-northeast of Blytheville, Arkansas, and close to the Yarbro 

and Bugg site (Figure B.4). An initial survey of the site found an elliptical (plan view) 

sand blow, approximately 20 m wide and 30 m long. Later, a trench excavation exposed 

the sand blow, sand-blow crater, and related sand dikes, as shown in Figure B.25 (Tuttle, 

1999). The sand dikes are very small, for the position of the trench is across the end of 

sand blow. The crater is filled with very fine to coarse sand. Based on archeological 

analysis and radiocarbon dating of materials found at this site, the liquefaction event was 

constrained in the time period between 800 A.D. and 1000 A.D., and was likely to be 

attributed to the 900 A.D. earthquakes (Tuttle, 1999). 

 

One SCPTu sounding was performed close to the trench, and its location is shown in the 

aerial photo in Figure B.26. The results of the sounding and inferred soil parameters are 

presented in Figure B.27. 
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B.8  Wolf River Site 

The Wolf River site is a paleoliquefaction site (Broughton et al., 2001) located east of 

Memphis, TN, and north of Colliersville, TN, and situated on the north bank of the Wolf 

River. This site has been discussed previously in Chapter 8 (Figures 8.17 to 8.27). 

 

B.9  Walker Site 

The Walker paleoliquefaction site that is located near Marked Tree, AR. On the basis of 

radiocarbon dating and artifact analysis, the sand blows and related dikes at this site are 

thought to have formed during a large New Madrid earthquake circa 1530 A.D. (Tuttle et 

al., 2000; Barnes, 2000). This site has been discussed previously in Chapter 6 (Figures 

6.16 to 6.28). 

 

B.10  Nodena Site 

The Nodena site is a paleoliquefaction site located northeast of Wilson, Arkansas (Figure 

B.28).  Three trenches were excavated at this site, shown as T1, T2 and T3 in Figure 

B.29. Logging in trench T1 is presented in Figure B.30. Although no sand dikes were 

observed at this trench, the sand deposits are interpreted as distal portions of sand blows, 

due to their similarity in sedimentary character and stratigraphic position to a sand blow 

deposit in trench T2 [Figure B.31 (A)]. The sand dikes in trench T2 are filled with fine 

sand, and some of them are connected with the overlying sand blow deposits. 

Radiocarbon dating and archeological analysis indicate that the liquefaction features were 

formed between 1450 and 1670, and likely caused by the 1530 earthquakes (Tuttle et al., 

2000). 
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Four cone penetration soundings were performed at this site, as shown in Figure B.29. 

Results of the SCPTu sounding (WILS02) are representative and inferred parameters are 

presented in Figure B.32. 

 

B.11  Hillhouse Site 

The Hillhouse site is located at Wyatt, Missouri. According to radiocarbon dating of the 

deposits and analysis of artifacts found at this site, the liquefaction features were formed 

during the 900 A.D. earthquakes (Tuttle, 1999). This site has been discussed previously 

in Chapter 6 (Figure 6.29 to 6.39). 

 

B.12  Meramec River Sites 

Liquefaction features were found at several sites along lower 12 km of the Meramec 

River at the south side of Saint Louis, MO. The age of these features is poorly 

constrained, due to the lack of material for radiocarbon dating and archeological analysis 

(Tuttle, 1999). Hoffman (1999) suspected that these liquefaction features were resulted 

from earthquakes located close to St. Louis about 6500 years ago, instead of those in the 

New Madrid Seismic Zone. 

 

Four cone penetration soundings were performed at paleoliquefaction sites along the 

Meramec River. Two of them are at the MR25W site located near US 61/67, and the 

other two are the MR203 site near MO 21. Figure B.33 shows the general location of the 

two sites. The detailed map for the MR25W site is presented in Figure B.34. Results of 
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the SCPTu sounding performed at this site and the inferred parameters are shown in 

Figure B.35. Similarly, Figure B.36 shows the detailed map for the MR203 site, and the 

results of the two SCPTu soundings performed at this site are shown in Figure B.37  and 

B.38.  

 

B.13  St. Francis River Sites 

Previous archaeological and paleoseismological investigations were performed in 1990 to 

1991 at paleoliquefaction sites along St. Francis River near Dexter, Missouri. They are 

documented in the report by Vaughn (1994). The age of these the paleoliquefaction 

features was poorly constrained, but they were suspected to be associated with 

earthquakes that occurred more than 9000 years ago; the seismic source was speculated 

to be closer than those in the New Madrid Seismic Zone (Vaughn, 1994). 

 

Six cone penetration soundings were performed at 3 different paleoliquefaction sites in 

this region. Two of these are at Dudley Main Ditch, two at Clodfelter Ditch, and the other 

two at Wilhelmina Cutoff of St. Francis River. The general locations of the test sites are 

shown in Figure B.39. The detailed map for the Dudley Main Ditch site is presented in 

Figure B.40, and results of the SCPTu sounding performed at this site are shown in 

Figure B.41. Similarly, the detailed map for the Clodfelter Ditch site and the SCPTu 

results at this site are shown in Figure B.42 and B.43, respectively, and those for the 

Wilhelmina Cutoff of St. Francis River are shown in Figure B.44 and B.45. 

 

 

343



T
ab

le
 B

.1
  S

um
m

ar
y 

of
 c

on
e 

pe
ne

tra
tio

n 
te

st
s p

er
fo

rm
ed

 a
t t

he
 p

al
eo

liq
ue

fa
ct

io
n 

si
te

s i
n 

th
e 

N
M

SZ
 si

nc
e 

19
98

 

 
D

at
e 

So
un

di
ng

 
Si

te
 

C
ity

 
St

at
e 

La
tit

ud
e 

Lo
ng

itu
de

 
D

ep
th

 
G

W
T 

Ty
pe

 
Se

ct
io

n 
 

 
 

 
 

N
° 

W
° 

(m
) 

(m
) 

 
 

16
-S

ep
-

98
 

M
E

M
P

H
-G

 
S

he
lb

y 
Fa

rm
s 

M
em

ph
is

 
TN

 
35

.0
29

13
 

89
.7

05
66

 
33

.0
0 

6.
00

 
S

C
P

Tu
2 

B
.1

 

21
-O

ct
-9

8 
Y

A
R

B
01

 
Y

ar
br

o 
E

xc
av

at
io

n 
B

ly
th

ev
ille

 
A

R
 

35
.9

82
33

 
89

.9
33

10
 

28
.0

0 
4.

00
 

S
C

P
Tu

2 
B

.2
 

21
-O

ct
-9

8 
B

U
G

G
01

 
B

ug
g 

40
 

B
ly

th
ev

ille
 

A
R

 
35

.9
72

77
 

89
.9

07
80

 
37

.0
0 

4.
00

 
S

C
P

Tu
2 

24
-O

ct
-9

8 
B

U
G

G
02

 
B

ug
g 

40
 

B
ly

th
ev

ille
 

A
R

 
35

.9
72

25
 

89
.9

07
92

 
34

.7
5 

4.
00

 
S

C
P

Tu
2 

B
.3

 

22
-O

ct
-9

8 
D

O
D

D
01

 
D

od
d 

Fa
rm

 
S

te
el

e 
M

O
 

36
.0

94
85

 
89

.8
48

31
 

31
.4

5 
4.

45
 

S
C

P
Tu

2 
22

-O
ct

-9
8 

D
O

D
D

02
 

D
od

d 
Fa

rm
 

S
te

el
e 

M
O

 
36

.0
94

58
 

89
.8

48
33

 
25

.6
0 

4.
00

 
S

C
P

Tu
2 

23
-O

ct
-9

8 
D

O
D

D
03

 
D

od
d 

Fa
rm

 
S

te
el

e 
M

O
 

36
.0

94
23

 
89

.8
48

16
 

32
.6

0 
4.

00
 

C
P

Tu
2 

 
B

.4
 

23
-O

ct
-9

8 
3M

S
61

7-
A

 
3M

S
61

7 
B

ly
th

ev
ille

 
A

R
 

35
.9

92
62

 
89

.8
35

56
 

30
.7

0 
5.

50
 

S
C

P
Tu

2 
24

-O
ct

-9
8 

3M
S

61
7-

C
 

3M
S

61
7 

B
ly

th
ev

ille
 

A
R

 
35

.9
92

76
 

89
.8

35
53

 
30

.5
5 

4.
00

 
C

P
Tu

2 
24

-O
ct

-9
8 

3M
S

61
7-

D
 

3M
S

61
7 

B
ly

th
ev

ille
 

A
R

 
35

.9
92

66
 

89
.8

35
26

 
15

.9
0 

4.
00

 
C

P
Tu

2 

 
B

.5
 

25
-O

ct
-9

8 
JO

H
N

01
 

Jo
hn

so
n 

Fa
rm

 
S

te
el

e 
M

O
 

36
.1

19
20

 
89

.8
43

93
 

16
.5

0 
7.

00
 

S
C

P
Tu

2 
B

.6
 

25
-O

ct
-9

8 
H

U
E

Y
01

 
H

ue
y 

H
ou

se
 

B
ly

th
ev

ille
 

A
R

 
35

.9
83

53
 

89
.8

86
50

 
26

.3
0 

4.
75

 
S

C
P

Tu
2 

B
.7

 
9-

Ju
l-0

0 
W

O
LF

1 
N

or
th

er
n 

B
an

k 
of

 
W

ol
f R

iv
er

  
M

em
ph

is
 

TN
 

35
.0

99
49

 
89

.6
99

31
 

26
.2

5 
6.

00
 

S
C

P
Tu

2 

9-
Ju

l-0
0 

W
O

LF
2 

N
or

th
er

n 
B

an
k 

of
 

W
ol

f R
iv

er
  

M
em

ph
is

 
TN

 
35

.0
99

47
 

89
.6

99
19

 
28

.9
 

6.
00

 
C

P
Tu

2 

9-
Ju

l-0
0 

W
O

LF
3 

N
or

th
er

n 
B

an
k 

of
 

W
ol

f R
iv

er
  

M
em

ph
is

 
TN

 
35

.0
99

51
 

89
.6

99
48

 
25

.1
 

6.
00

 
C

P
Tu

2 

9-
Ju

l-0
0 

W
O

LF
4 

N
or

th
er

n 
B

an
k 

of
 

W
ol

f R
iv

er
  

M
em

ph
is

 
TN

 
35

.0
99

32
 

89
.7

00
06

 
20

.1
 

6.
00

 
C

P
Tu

2 

10
-J

ul
-0

0 
W

O
LF

5 
N

or
th

er
n 

B
an

k 
of

 
W

ol
f R

iv
er

  
M

em
ph

is
 

TN
 

35
.0

99
82

 
89

.7
02

85
 

31
.7

 
6.

00
 

S
C

P
Tu

2 

10
-J

ul
-0

0 
W

O
LF

6 
N

or
th

er
n 

B
an

k 
of

 
W

ol
f R

iv
er

  
M

em
ph

is
 

TN
 

35
.0

99
80

 
89

.7
03

01
 

15
.8

 
6.

00
 

C
P

Tu
2 

10
-J

ul
-0

0 
W

O
LF

7 
N

or
th

er
n 

B
an

k 
of

 
W

ol
f R

iv
er

  
M

em
ph

is
 

TN
 

35
.0

99
83

 
89

.7
03

22
 

20
.5

5 
6.

00
 

R
C

P
Tu

2 

       
B

.8
 

344



T
ab

le
 B

.1
  S

um
m

ar
y 

of
 c

on
e 

pe
ne

tra
tio

n 
te

st
s p

er
fo

rm
ed

 a
t t

he
 p

al
eo

liq
ue

fa
ct

io
n 

si
te

s i
n 

th
e 

N
M

SZ
 si

nc
e 

19
98

 (C
on

tin
ue

d)
 

 
D

at
e 

So
un

di
ng

 
Si

te
 

C
ity

 
St

at
e 

La
tit

ud
e 

Lo
ng

itu
de

 
D

ep
th

 
G

W
T 

Ty
pe

 
Se

ct
io

n 
 

 
 

 
 

N
° 

W
° 

(m
) 

(m
) 

 
 

14
-A

ug
-0

0 
M

TR
E

E
01

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

16
 

90
.3

89
09

 
32

.0
5 

5.
00

 
S

C
P

Tu
2 

15
-A

ug
-0

0 
M

TR
E

E
02

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

24
 

90
.3

89
12

 
8.

95
 

5.
00

 
R

C
P

Tu
2 

15
-A

ug
-0

0 
M

TR
E

E
03

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

20
 

90
.3

89
15

 
13

.6
8 

5.
00

 
R

C
P

Tu
2 

15
-A

ug
-0

0 
M

TR
E

E
04

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

17
 

90
.3

89
18

 
15

.7
0 

5.
00

 
R

C
P

Tu
2 

15
-A

ug
-0

0 
M

TR
E

E
05

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

13
 

90
.3

89
21

 
15

.7
0 

5.
00

 
R

C
P

Tu
1 

15
-A

ug
-0

0 
M

TR
E

E
06

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

11
 

90
.3

89
22

 
15

.8
0 

5.
00

 
R

C
P

Tu
1 

15
-A

ug
-0

0 
M

TR
E

E
07

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

07
 

90
.3

89
24

 
15

.5
7 

5.
00

 
R

C
P

Tu
1 

15
-A

ug
-0

0 
M

TR
E

E
08

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

04
 

90
.3

89
25

 
15

.7
3 

5.
00

 
R

C
P

Tu
1 

16
-A

ug
-0

0 
M

TR
E

E
09

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

83
 

90
.3

89
92

 
15

.5
5 

5.
00

 
R

C
P

Tu
2 

16
-A

ug
-0

0 
M

TR
E

E
10

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

79
 

90
.3

89
97

 
15

.6
5 

5.
00

 
R

C
P

Tu
2 

16
-A

ug
-0

0 
M

TR
E

E
11

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

77
 

90
.3

89
99

 
15

.8
0 

5.
00

 
R

C
P

Tu
2 

17
-A

ug
-0

0 
M

TR
E

E
12

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

75
 

90
.3

90
02

 
25

.9
3 

5.
00

 
S

C
P

Tu
2 

17
-A

ug
-0

0 
M

TR
E

E
13

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

73
 

90
.3

90
05

 
8.

05
 

5.
00

 
R

C
P

Tu
2 

17
-A

ug
-0

0 
M

TR
E

E
14

 
W

al
ke

r S
ite

 
M

ar
ke

d 
Tr

ee
 

A
R

 
35

.5
83

71
 

90
.3

90
09

 
15

.4
8 

5.
00

 
R

C
P

Tu
2 

      
B

.9
 

6-
M

ar
-0

1 
W

IL
S

02
 

N
od

en
a 

S
ite

 
W

ils
on

 
A

R
 

35
.6

02
02

 
89

.9
77

19
 

21
.4

3 
6.

00
 

S
C

P
Tu

2 
6-

M
ar

-0
1 

W
IL

S
04

 
N

od
en

a 
S

ite
 

W
ils

on
 

A
R

 
35

.6
02

08
 

89
.9

77
22

 
16

.2
0 

6.
00

 
C

P
Tu

2 
6-

M
ar

-0
1 

W
IL

S
06

 
N

od
en

a 
S

ite
 

W
ils

on
 

A
R

 
35

.6
02

15
 

89
.9

77
15

 
22

.9
3 

6.
00

 
R

C
P

Tu
1 

7-
M

ar
-0

1 
W

IL
S

07
 

N
od

en
a 

S
ite

 
W

ils
on

 
A

R
 

35
.6

02
17

 
89

.9
77

11
 

16
.4

3 
6.

00
 

C
P

Tu
2 

  
B

.1
0 

8-
M

ar
-0

1 
W

Y
A

T0
1 

H
ill

ho
us

e 
S

ite
 

W
ya

tt 
M

O
 

36
.9

26
09

 
89

.1
58

22
 

25
.3

0 
2.

70
 

S
C

P
Tu

2 
8-

M
ar

-0
1 

W
Y

A
T0

3 
H

ill
ho

us
e 

S
ite

 
W

ya
tt 

M
O

 
36

.9
26

85
 

89
.1

57
17

 
12

.0
3 

2.
70

 
C

P
Tu

2 
9-

M
ar

-0
1 

W
Y

A
T0

4 
H

ill
ho

us
e 

S
ite

 
W

ya
tt 

M
O

 
36

.9
27

06
 

89
.1

55
72

 
23

.0
0 

2.
70

 
R

C
P

Tu
2 

9-
M

ar
-0

1 
W

Y
A

T0
5 

H
ill

ho
us

e 
S

ite
 

W
ya

tt 
M

O
 

36
.9

27
40

 
89

.1
56

10
 

19
.6

3 
2.

70
 

R
C

P
Tu

2 

  
B

.1
1 

   

345



 
T

ab
le

 B
.1

  S
um

m
ar

y 
of

 c
on

e 
pe

ne
tra

tio
n 

te
st

s p
er

fo
rm

ed
 a

t t
he

 p
al

eo
liq

ue
fa

ct
io

n 
si

te
s i

n 
th

e 
N

M
SZ

 si
nc

e 
19

98
 (C

on
tin

ue
d)

 

 
D

at
e 

So
un

di
ng

 
Si

te
 

C
ity

 
St

at
e 

La
tit

ud
e 

Lo
ng

itu
de

 
D

ep
th

 
G

W
T 

Ty
pe

 
Se

ct
io

n 
 

 
 

 
 

N
° 

W
° 

(m
) 

(m
) 

 
 

20
-J

un
-0

1 
M

E
R

01
 

M
R

25
W

 - 
M

er
am

ec
 

R
iv

er
 n

ea
r U

S
 

61
/6

7 

S
t. 

Lo
ui

s 
M

O
 

38
.4

58
82

 
90

.3
50

43
 

19
.7

5 
2.

00
 

S
C

P
Tu

2 

20
-J

un
-0

1 
M

E
R

02
 

M
R

25
W

 - 
M

er
am

ec
 

R
iv

er
 n

ea
r U

S
 

61
/6

7 

S
t. 

Lo
ui

s 
M

O
 

38
.4

58
82

 
90

.3
50

43
 

18
.6

8 
2.

00
 

C
P

Tu
2 

21
-J

un
-0

1 
M

E
R

03
 

M
R

20
3 

- M
er

am
ec

 
R

iv
er

 n
ea

r M
O

 2
1 

S
t. 

Lo
ui

s 
M

O
 

38
.4

65
38

 
90

.4
14

67
 

12
.9

8 
2.

00
 

S
C

P
Tu

2 

21
-J

un
-0

1 
M

E
R

04
 

M
R

20
3 

- M
er

am
ec

 
R

iv
er

 n
ea

r M
O

 2
1 

S
t. 

Lo
ui

s 
M

O
 

38
.4

65
02

 
90

.4
14

60
 

13
.5

5 
2.

00
 

S
C

P
Tu

2 

    
B

.1
2 

19
-J

un
-0

1 
D

E
X

01
 

D
M

1 
- D

ud
le

y 
M

ai
n 

D
itc

h 
ne

ar
 S

t. 
Fr

an
ci

s 
R

iv
er

 

D
ud

le
y 

M
O

 
36

.7
00

38
 

90
.1

32
51

 
29

.0
2 

9.
00

 
S

C
P

Tu
2 

19
-J

un
-0

1 
D

E
X

02
 

D
M

1 
- D

ud
le

y 
M

ai
n 

D
itc

h 
ne

ar
 S

t. 
Fr

an
ci

s 
R

iv
er

 

D
ud

le
y 

M
O

 
36

.7
00

38
 

90
.1

32
51

 
19

.3
3 

9.
00

 
R

C
P

Tu
2 

22
-J

un
-0

1 
D

E
X

03
 

C
lo

df
el

te
r D

itc
h 

ne
ar

 S
t. 

Fr
an

ci
s 

R
iv

er
 

D
ud

le
y 

M
O

 
36

.6
53

18
 

90
.1

32
31

 
30

.0
3 

8.
50

 
S

C
P

Tu
2 

22
-J

un
-0

1 
D

E
X

03
1 

C
lo

df
el

te
r D

itc
h 

ne
ar

 S
t. 

Fr
an

ci
s 

R
iv

er
 

D
ud

le
y 

M
O

 
36

.6
53

21
 

90
.1

32
26

 
28

.9
0 

8.
50

 
R

C
P

Tu
2 

22
-J

un
-0

1 
D

E
X

04
 

W
ilh

el
m

in
a 

C
ut

of
f 

of
 S

t. 
Fr

an
ci

s 
R

iv
er

 
D

ud
le

y 
M

O
 

36
.5

37
25

 
90

.1
75

70
 

26
.4

3 
6.

50
 

S
C

P
Tu

2 

22
-J

un
-0

1 
D

E
X

05
 

W
ilh

el
m

in
a 

C
ut

of
f 

of
 S

t. 
Fr

an
ci

s 
R

iv
er

 
D

ud
le

y 
M

O
 

36
.5

37
25

 
90

.1
75

70
 

26
.5

0 
6.

50
 

R
C

P
Tu

2 

     
B

.1
3 

  

346



 
 

Figure B.1  Map showing the general location of the Shelby Farms site 
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Figure B.2  Aerial photo showing the location of the SCPTu sounding (MEMPH-G) 

performed at the Shelby Farms site (Aerial photo from http://terraserver.microsoft.com) 
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Figure B.4  Map showing the general location of Yarbro Excavation site, Bugg site, 

Hueys site, and 3MS617 site in Bytheville, Arkansas 
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Figure B.5  Aerial photo showing the location of the logged liquefaction features and the 

SCPTu sounding (YARB01) performed at the Yarbro Excavation site in Blytheville, 
Arkansas (Photo from http://terraserver.microsoft.com) 
Note: Y1, Y2, and Y3 are logged liquefaction features 
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Figure B.11  Aerial photo showing the location of the SCPTu soundings (BUGG01 and 

BUGG02) performed at Bugg site in Blytheville, Arkansas 
(Photo from http://terraserver.microsoft.com) 
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Figure B.16  Aerial photo showing the location of the SCPTu sounding performed at 

Dodd farm site in Steele, Tennessee (Aerial photo from http://terraserver.microsoft.com) 
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Figure B.19  Aerial photo showing the location of the cone penetration soundings 

performed at 3MS617 site in Blytheville, Arkansas  
(Aerial photo from http://terraserver.microsoft.com) 
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Figure B.23  Aerial photo showing the location of the SCPTu sounding (JOHN01) 

performed at Jonhson Farm site, Steele, Missouri  
(Aerial photo from http://terraserver.microsoft.com) 
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Figure B.25  Log of exposure at Hueys site in Blytheville, Arkansas (Tuttle, 1999) 
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Figure B.26  Aerial photo showing the location of the SCPTu sounding (HUEY01) 

performed at Hueys site in Blytheville, Arkansas  
(Aerial photo from http://terraserver.microsoft.com) 
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Figure B.28  Map showing the general location of the Nodena site at Wilson, Arkansas 
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Figure B.29  Aerial photo showing the location of the soundings performed at Nodena 

site, Wilson, Arkansas 
(Aerial photo from http://terraserver.microsoft.com) 
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Figure B.33  Aerial photo showing the general location of the Meramec River sites 
(Hoffman, 2001) 

 

 
 

Figure B.34  Aerial photo showing the location of the MR24W site along Meramec 
River near St. Louis, Missouri (Hoffman, 2001) 
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Figure B.36  Aerial photo showing the location of the MR203 site along Meramec River 

near St. Louis, Missouri (Hoffman, 2001) 
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Figure B.39  Map showing the general location of the St. Francis River sites near Dexter, 
Missouri (Hoffman, 2001) 
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Figure B.40  Aerial photo showing the location of Dudley Main Ditch site along 

Meramec River near Dexter, Missouri (Hoffman, 2001) 
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Figure B.42  Aerial photo showing the location of St. Francis River site at Clodfelter 
Ditch near Dexter, Missouri (Hoffman, 2001) 
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Figure B.44  Aerial photo showing the location of St. Francis River site at Wilhelmina 

Cutoff near Dexter, Missouri (Hoffman, 2001) 
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APPENDIX C 
 
 

NON-PALEOLIQUEFACTION TEST SITES 
 
 

Series of cone penetration tests have been performed at new sites of construction and 

historic sites where no apparent liquefaction evidence was found, as listed in Table C.1. 

Geotechnical site characterization using seismic cone penetration tests (SCPTu) at these 

sites identifies soils with high potential to liquefaction, and provides data for site-

amplification analysis. For a specific site, the Vs in the top 30 m can be relatively 

accurately measured in a downhole manner by a SCPTu test, and it is of paramount 

significance to seismic evaluation. The 2000 IBC (Internation Building Code) 

emphasizes the importance of the average Vs in the top 30.5 m (100 ft) by using it to 

define sites with repect to their seismic vulnerability, as listed Table 6.2 in Chapter 6. 

Brief introduction of these sites is given in the following subsections. 

 

C.1  Prior SCPTus By GT Team 

The sites visited before year 2000 have been summarized by Schneider (1999). The 

Houston Levee site and the Wolf River Boulevard site are investigated, because they are 

in the vicinity of the Shelby Farms paleoliquefaction site discussed in Appendix A. The 

sediments at these sites should have been deposited in a similar manner as those at the 

Shelby Farms site. The Monopole Tower site is used to compare the soil profile derived 

from cone penetration data with soil samples collected by SPT at this site. The I-155 

bridge site was studied using cone penetration tests due to concern with safety and 

seismic performance of the bridge during a major event. Soundings were performed at the 

403



sites in Shelby Farms Shooting Range and Shelby Forest for the purpose of comparing 

shear wave velocity measurements taken by a variety of different field methods. Some 

introduction is given to the test sites visited since 2000 in the following sub-sections: 

 

C.2  Mud Island Site 

Mud Island, the parkland of 52 acres, was originally formed by dredge spoil taken from 

the Mississippi river, and the area currently forms a peninsula located on the 

northwestern edge of downtown Memphis, Tennessee. It is home to a growing number of 

apartments and houses for several thousand residents, as well as some commercial and 

entertainment developments. Since Mud Island has not experienced a large earthquake 

event due to its short period of existence, the potential damage during the probable future 

earthquakes is not clear. Liquefaction evaluation focusing on this island would be very 

helpful for estimating the damages during future earthquakes, and it can serve as a 

valuable guide for the future development of the island. SCPTu soundings were 

performed at five locations (A, B, C, D, and E) at Mud Island as shown in Figure C.1. 

Results of this study are documented in Liao et al. (2000). 

 

C.3  Center for Earthquake Research and Information (CERI) Headquarters 

Cone penetrations soundings were performed next to the 100-meter accelerometer array, 

which is installed at the headquarters of CERI in Memphis, TN. Its location is shown in 

Figure C.2. The soil strength characteristics and shear wave velocity obtained are 

necessary for analysis of the acceleration history should a seismic event occur.  Results of 

this study are documented in Liao et al. (2001). 
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C.4  Test sites near Memphis, Tennessee 

SCPTu tests were done at a sewage treatment plant on the banks of the Wolf River near 

Germantown, Tennessee, and in a small housing community on the banks of the 

Loosahatchee River in the northwestern part of Memphis, Tennessee. Their locations are 

shown in Figure C.2. While no liquefaction features were ever documented at these 

specific locations, the general areas are known to have experienced seismicity in the past. 

Results of this study are documented in Mayne (2002). 

 

C.5  Embayment Seismic Excitation Experiment (ESEE) Sites 

During the Embayment Seismic Excitation Experiments (ESEE), two test sites were 

selected to detonate underground explosives to generate surface waves. The first site was 

located in the southern NMSZ near Marked Tree, AR, and the second site selected in the 

northern NMSZ near Tiptonville, TN. This study has been discussed in section 6.4 of 

Chapter 6. 

 

C.6  Advanced National Seismic System (ANSS) Sites 

SCPTu tests were performed at monitoring sites for the Advanced National Seismic 

System (ANSS) in Tennesse, Arkansas, and Missouri. Locations of these sites are shown 

in Figures C.3 to C.5. If a significant seismic event were to occur, the soil data collected 

at monitoring sites would be needed to relate ground motions and deformations to the soil 

properties at the monitoring locations and the numerical modeling of site response. This 

study is documented by McGillivray et al. (2002). 
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Figure C.1  Aerial photo showing the location of the tests sites at Mud Island, Memphis, 
Tennessee (Photo from http://terraserver.microsoft.com ) 
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Figure C.2  Map showing the location of Center for Earthquake Research and 
Information (CERI) Headquarter and test sites near Memphis, TN 
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Figure C.3  Map showing ANSS station sites near Memphis, Tennessee 
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Figure C.4  Map showing ANSS station sites in Tennessee, Arkansas, and Missouri 
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Figure C.5  Map showing ANSS station sites in Tennessee, Arkansas, and Missouri 
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APPENDIX D 
 
 

LIQUEFACTION EVALUATION AT  
PALEOLIQUEFACTION TEST SITES IN NMSZ 

 
 

For selected paleoliquefaction test sites which causative earthquakes have been dated, 

their liquefaction potential is evaluated using the procedures outlined in Chapter 5. The 

scenario earthquakes are assumed to be the same earthquake events that liquefied the test 

sites previously discussed.  

 

D.1  Yarbro Excavation Paleoliquefaction Site 

The large liquefaction features at Yarbro site include up to 6 m of subsidence and are 

believed to be formed during the 1811-1812 earthquakes (Tuttle, 1999). Figure D.1 

shows the location of Yarbro site relative to the epicenters of the causative earthquakes 

events. It is closest to the epicenter of the Mw = 8.1 earthquake event (5 km), which is 

supposed be generate the strongest bedrock motion fot the Yarbro site. For this event, the 

time-history of bedrock motion generated for the Yarbro site using the program SMSIM 

is presented in Figure D.2. Since the empirical attenuation relationship proposed by 

Boore & Joyner (1991) can only be used for distance from 10 to 400 km, the CSR is 

computed only by DEEPSOIL. It is compared with the CRRs derived from tip resistance 

qT and shear wave velocity Vs in Figure D.3 indicating fairly extensive liquefaction to 25 

m depths. The probabilities of liquefaction based on qT and Vs are shown quite high in 

Figure D.4.  
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D.2  Bugg Site and Hueys Site 

The Bugg site and Hueys site are located very close together, and the liquefaction 

features at both sites are attributed to the 900 A.D (Tuttle, 1999). earthquake events. The 

distances between these two sites and the epicenters of the earthquakes events are shown 

in Figure D.5. According the SMSIM program, the strongest bedrock motion generated at 

these sites is caused by the Mw = 7.6 earthquake event, as shown in Figure D.6. For Bugg 

site, results of liquefaction analysis by deterministic and probabilistic approaches are 

shown in Figures G.7 and G.8, respectively. They are shown in Figures D.9 and D.10 for 

Hueys site. 

 

D.3  Dodd Farm Site 

Liquefaction features at Dodd Farm site are attributed to 1530 A.D (Tuttle, 1999). 

earthquakes, and its distances to the epicenters of the earthquake events are shown in 

Figure D.11. The strongest bedrock motion is generated by the Mw = 7.6 earthquake 

event, as shown in Figure D.12. The CSR is computed using the program DEEPSOIL, 

and it is compared with the CRR derived from qT and Vs in Figure D.13. Results of 

liquefaction evaluation by probabilistic approaches are shown in Figure D.14.  

 

D.4 Johnson Farm Site 

Liquefaction features at Johnson Farm site are believed to be caused by the 900 A.D. 

earthquakes (Tuttle, 1999), as shown in Figure D.15. The strongest bedrock motion is 

generated from the Mw = 8.1 earthquake event (Figure D.16). Results of liquefaction 
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evaluation by deterministic and probabilistic approaches are shown in Figures D.17 and 

D.18. 

 

D.5 Nodena Site 

Liquefaction features at Nodena site is attributed to the 1530 earthquake events (Tuttle et 

al., 2000), as shown in Figure D.19. The strongest bedrock motion is generated from the 

Mw = 7.6 earthquake event (Figure D.20). Results of liquefaction evaluation by 

deterministic and probabilistic approaches are shown in Figures D.21 and D.22. 
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Yarbro SiteYarbro Site

 
 

Figure D.1  Yarbro site and the estimated epicenters of the seismic events that occurred 
in 1811 - 1812 in NMSZ (modified from Tuttle, 1999) 

 
 

 
 

Figure D.2  Example time-history of bedrock motion generated for the Yarbro site in the 
event of the Mw = 8.1 earthquakes occurring on 12/16/1811 using the program SMSIM 
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Figure D.3  Liquefaction analyses by deterministic approaches based on the SCPTu 
sounding performed at Yarbro site (Mw = 8.1, epicentral distance = 5 km) 
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Figure D.4  Liquefaction analyses by probabilistic approaches based on the SCPTu 
sounding performed at Yarbro site (Mw = 8.1, epicentral distance = 5 km) 
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Figure D.5  Bugg site, Hueys site, and the estimated epicenters of the seismic events that 

occurred in 900 A.D. in NMSZ (modified from Tuttle, 1999) 
 
 

 
 

Figure D.6  Example time-histories of bedrock motion generated for the Bugg site and 
Hueys site in the event of the Mw = 7.6 earthquake occurring around 900 A.D. using the 

program SMSIM 
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Figure D.7  Liquefaction analyses by deterministic approaches based on the SCPTu 
sounding (BUGG01) performed at the Bugg site (Mw = 7.6, epicentral distance = 25 km) 
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Figure D.8  Liquefaction analyses by probabilistic approaches based on the SCPTu 
sounding (BUGG01) performed at the Bugg site (Mw = 7.6, epicentral distance = 25 km) 
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Figure D.9  Liquefaction analyses by deterministic approaches based on the SCPTu 
sounding (HUEY01) performed at Hueys site (Mw = 7.6, epicentral distance = 25 km) 
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Figure D.10  Liquefaction analyses by probabilistic approaches based on the SCPTu 
sounding (HUEY01) performed at Hueys site (Mw = 7.6, epicentral distance = 25 km) 
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Figure D.11  Distance from Dodd Farm site to the estimated epicenters of the seismic 
events that occurred around 1530 A.D. in NMSZ (modified from Tuttle, 1999) 

 
 

   
 

Figure D.12  Example time-history of bedrock motion generated for the Dodd Farm site 
in the event of the Mw = 7.6 earthquake event occurring around A.D 1530 using the 

program SMSIM 
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Figure D.13  Liquefaction analyses by deterministic approaches based on the SCPTu 
sounding performed at Dodd Farm site (Mw = 7.6, epicentral distance = 8 km) 
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Figure D.14  Liquefaction analyses by probabilistic approaches based on the SCPTu 
sounding performed at Dodd Farm site (Mw = 7.6, epicentral distance = 8 km) 
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Figure D.15  Distance from Johnson Farm site to the estimated epicenters of the seismic 
events that occurred around 900 A.D. in NMSZ (modified from Tuttle, 1999) 

 

 
 

Figure D.16  Example time-histories of bedrock motion generated for the Johnson Farm 
site in the event of the Mw = 8.1 earthquakes occurring around 900 A.D. using the 

program SMSIM 
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Figure D.17  Liquefaction analyses by deterministic approaches based on the SCPTu 
sounding performed at Johnson Farm site (Mw = 8.1, epicentral distance = 28 km) 
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Figure D.18  Liquefaction analyses by probabilistic approaches based on the SCPTu 
sounding performed at Johnson Farm site (Mw = 8.1, epicentral distance = 28 km) 
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Figure D.19  Distance from the Nodena site to the estimated epicenters of the seismic 
events that occurred around 1530 A.D. in NMSZ (modified from Tuttle, 1999) 

 
 

      
 

Figure D.20  Example time-histories of bedrock motion generated for the Nodena site in 
the event of the Mw = 7.6 earthquake event occurring around A.D 1530 using the 

program SMSIM  
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Figure D.21  Liquefaction analyses by deterministic approaches based on the SCPTu 
sounding performed at Nodena site (Mw = 7.6, epicentral distance = 48 km) 
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Figure D.22  Liquefaction analyses by probabilistic approaches based on the SCPTu 
sounding performed at Nodena site (Mw = 7.6, epicentral distance = 48 km) 
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APPENDIX E 
 
 

INSTRUCTIONS FOR SHEARPRO 1.3 
 
 

1. General Information 

1) This program can be run on operating systems Window 95/98/2000/XP; 

2) Shear wave files of the same format as the ASCII files converted from the 

binary files collected by Hogentogler computers are used as input, as shown in 

Figure E.1; 

 

2. Install 

1) Unzip/copy all the files of this program into a new folder; 

2) Find the setup.exe file and set up the program on your computer; 

3) The icon of ShearWavePro should appear on your Start Program Menu. 

 

3. Configuration 

After starting this program, click the menu item of “File\Configurations” to set up 

the necessary parameters, which include the string distance between the cone and 

the seismic source, and the distance between the geophone and cone tip, as shown 

in Figure E.2.  

 

4. Load the files 

Click the menu item of “File\Load…” and load the raw shear wave files in ASCII 

format. After the files are loaded, the filtered waves should appear on the screen 
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with the corresponding depth shown on the left of each wave train, as shown in 

Figure E.3. 

 

5. Clip the waves using the window 

Each wave train has a window, which consists of a left (red) bar and a right (blue) 

bar. These bars can be selected and dragged by the mouse to clip the waves, and 

only the part that is left in the window is used for future computations, as shown 

in Figure E.4. 

 

6. Run 

After the waves have been clipped by the window, click the menu item of 

“Run\Cross-Correlation” to compute the wave velocity. 

 

7. View 

1) After cross-correlation is performed, the items in the pull-down menu of 

“View” are enabled, and the results can be viewed by clicking these items; 

2) The raw shear wave trains can be displayed on screen by clicking the item of 

“Original Waves”; 

3) The filtered shear wave trains can be displayed on screen by clicking the item 

of “Original Waves”; 

4) The computed shear wave velocity can be plotted on screen by clicking the 

item of “Shear Wave Velocity from Cross-Correlation”; 
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5) The computed coefficient of determination (r2) for cross-correlation can be 

plotted on screen by clicking the item of “Coef. of Determination”; 

6) Data of the computed velocity and coefficient of determination data can be 

displayed by clicking the item of “Velocity Data”, and the data can be saved in a 

text file. Format of the saved file is shown in Figure E.5. 

 

8. Save 

After the results are generated, they can be saved in a .swp file by click the menu 

item of “File\Save” or “File\Save As…” And this file can be opened by click the 

menu item of “File\Open”. 

 

 

Note: User accepts all risks associated with output data and results. Authors make no 

claim to accuracy or reasonableness of results and possible errors. 
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   Sounding: coke01               
   Depth: 1.075  meter(s) 
 
 
    TIME    AMPLITUDE   
    (ms) 
 
   0.025    -0.1049 
   0.050    -0.1006 
   0.075    -0.0964 
   0.100    -0.0964 
   0.125    -0.0964 
   0.150    -0.0899 
   0.175    -0.0964 
   0.200    -0.0921 
   0.225    -0.0985 
   0.250    -0.0964 
   0.275    -0.0985 

       …     …. 
 

Figure E.1  Format of input shear wave file 

 

 
Figure E.2  Configurations at the start of the program ShearPro  

 
 
 
 
 
 
 

431



 

0 20 40 60 80 100 120 140 160 180 200

Time (ms)

D
ep

th
 (m

)
0 20 40 60 80 100 120 140 160 180 200

Time (ms)

D
ep

th
 (m

)

 
Figure E.3  Shear wave trains displayed on screen after shear wave files are loaded 
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Figure E.4  Trimmed shear wave trains 
 
 
 

Depth(m)      Velocity(m/s)   r2   
1.320000      339.344360     0.756075 
2.320000      375.113068     0.759930 
3.320000      328.946930     0.956530 
4.320000      307.812653     0.606270 
5.320000      256.445557     0.857751 
6.820000      226.870239     0.367164 

    …  …          … 
 

Figure E.5  Format of output data of computed shear wave velocity and coefficient of 
determination 
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APPENDIX F 
 
 

INSTRUCTIONS FOR CLUSTERPRO 1.0 
 
 

1. General Information 

1) This program can be run on operating systems Window 95/98/2000/XP; 

2) This code is designed to process raw CPT data files of the same format as the 

ASCII files collected by Hogentogler computers, as shown in Figure F.1; 

 

2. Install 

1) Unzip/copy all the files of this program into a new folder; 

2) Find the setup.exe file and set up the program on your computer; 

3) The icon of ClusterPro should appear on your Start Program Menu. 

 

3. Load the data file 

Click the menu item of “File\Load…”, and a window as in Figure F.2 will pop up. 

The CPT data file can be selected by clicking “Browse”. Groundwater table also 

needs to be input in this window.  

 

4. Run 

After the CPT data have been loaded, click the menu item of “Run\Cluster 

Analysis”, and a window as in Figure F.3 will pop up. By selecting “All” in the 

block of “Depth Range”, cluster analysis will be performed for all the input CPT 

data. By selecting “Specify” in “Depth Range”, cluster analysis will be performed 
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for the CPT data in the specified depth range. By selecting the data channels in 

the “Options” block, cluster analysis will be performed based on the selected 

channels. The data will be clustered into the number of clusters input through this 

window. 

 

7. Results 

After the cluster information is input into the program, results will be displayed 

on computer screen, as shown in Figure F.4. They are presented in two formats: 

the first format is the soil profile with the different clusters representing different 

soil types, and the second format includes the CPTu data points plotted in the 

suggested three-dimensional space as numbers corresponding to the cluster in 

which it belongs. The three-dimensional space in the second form can be rotated 

using the mouse.  

 
 
 

Note: User accepts all risks associated with output data and results. Authors make no 

claim to accuracy or reasonableness of results and possible errors. 
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jag03 09-26-00 14:13 alec            Metric Absolute [SI] 
opelika         hog10tu2res     1                4  0  .025  .1  .7  1  2  3  4  6  
  0.03    1.96   100.5     -9.5    2.90   
  0.05    2.30   151.7     -9.8    0.47   
  0.08    2.79   197.6     -7.6    0.72   
  0.10    3.32   231.7     -3.1    0.73   
  0.13    3.49   248.1     -2.0    0.42   
  0.15    3.61   255.4      3.0    0.18   
  0.17    3.48   251.5     -1.1    0.47  
  0.20    3.51   244.6     -1.6    0.10  
  0.23    3.73   242.5     -0.3    0.05  
  0.25    3.79   242.6     -0.5    0.17  

    …  … … … …  

Figure F.1  Format of input file for ClusterPro 1.0 

Note: The data columns from left to right represent depth (m), tip resistance qc (MPa), 
sleeve friction fs (kPa), porewater pressure u2 (kPa), and inclination i. 

 

 
 

Figure F.2  Load raw CPT data and input water table into ClusterPro 1.0 
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Figure F.3  Input information for cluster analysis 
 

 

Figure F.4  Output of cluster analysis by ClusterPro 1.0 
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APPENDIX G 
 
 

INSTRUCTIONS FOR INSITUDATA 1.0 
 
 

1. General Information 

1) This program can be run on operating systems Window 95/98/2000/XP; 

2) This program is designed to process data from various in-situ tests, but the 

current version focuses on SCPTu data; 

 

2. Install 

1) Unzip/copy all the files of this program into a new folder; 

2) Find the setup.exe file and set up the program on your computer; 

3) The icon of InSituData should appear on your Start Program Menu. 

 

3. Launch the program 

When the program is started, a launcher interface (Figure G.1) pops up on the 

screen. By clicking the button on the launcher interface, the program continues. 

 

4. Load the data 

The raw SCPTu data can be loaded into the software from ASCII files. By 

clicking the tool button “Open”, a window pops up for selecting the data file, as 

shown in Figure G.2 (a). After the file is selected, its content is displayed in the 

window as shown in Figure G.2 (b). By specifying the number of title lines in the 

data file, the header of the file that is not the SCPTu data can be excluded from 
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loading into the software. InSituData can also load the raw data by copying them 

from Excel spreadsheet and paste them in the program by clicking the tool button 

“Paste”.  

 

5. Assign names and units to the data column 

After the raw SCPTu data or CPTu data are loaded into the software, the tool 

button “Assign” is enabled. By clicking this button, the “Assign Data Columns” 

window pops up, as shown in Figure G.3. By clicking on the cells in this window, 

the columns can be named after the selection of the user from the pull-down list 

and the units can be assigned. By clicking on the “Set as Default” button, the 

current set of column names and units are set as the default. The default names fill 

in the cells, if the “Load Default” button is clicked. The names can also be set by 

copying them from Excel spreadsheet, and then paste in this window by clicking 

the “Paste” button. Note that the initial default unit for the tip resistance qT is 

MPa, the sleeve friction fs is kPa, the porewater pressure is kPa, and the shear 

wave velocity is m/s. 

 

6. Calculate Parameters 

After the data columns are named, the “Calculate” button in the tool bar of the 

software is enabled. By clicking this button, the “Calculate Parameters” window 

pops out [Figure G.4 (a)]. The water table is input here, and the parameters of 

interest to the user can be selected for computation. The parameters are calculated 
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using the correlations recommended by the user herein. Figure G.4 (b) shows the 

software interface with data columns corresponding to the calculated parameters. 

 

7. User-Defined Equations 

To give the user more flexibility, the software allows the user to define the 

preferred correlation equations. By clicking the tool button of “Equations”, the 

“Equations” window pops up, as shown in Figure G.5. Names of the variables, 

which value are available in this program, are listed on the left of the window. On 

the right of the window are a key pad similar to that of calculator and a list of 

mathematical functions. By double clicking the listed variables and functions, 

they can be input in the text-edit box for “Expression”. Numbers and some other 

symbols can be input by typing or clicking on the key pad on the window. The 

new variable corresponding to the expression can be named in the text-edit box 

for “Store Result in Variable”. The user-defined equations can be saved for future 

use by clicking the button “Save Equation”. By clicking “Load Equation”, the 

window of “Saved Equations” pops up, and shows all the equations saved 

previously. If any of the equations is selected, it will be shown in the “Equations” 

window. The equations can also be deleted by clicking the “Delete” button on the 

window.  

 

8. Data Visualization 

The data loaded into and calculated by this software can be plotted in charts 

similar to those in Excel. By clicking on the text of “Data Visualization”, the 
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container for the plots is shown on the screen [Figure G.6 (a)]. Charts can be 

generated by clicking on the tool button “New Figure”, and deleted by clicking on 

the tool button “Delete”. By clicking “Set Default”, the current charts are set as 

default, and the same charts are presented when the “Load Default” is clicked. 

The “Properties” window pops out by double clicking the charts, and properties of 

the charts can thus be configured. Configuring the chart properties in this software 

is similar to that in Excel [Figure G.6 (b)]. Similarly, the chart properties can also 

be set or loaded as default. 

 

9. Export to Excel 

By clicking the “Export to Excel” button on the tool bar, both the data and the 

charts generated in the software are output to a newly generated Excel 

spreadsheet.  

 

Note: User accepts all risks associated with output data and results. Authors make no 

claim to accuracy or reasonableness of results and possible errors. 
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Figure G.1  Launcher interface for the software InSituData 
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(a) 

 
(b) 

 
Figure G.2  Load raw CPTu data into the software InSituData: (a) Open the file 

containing raw CPTu data; (b) Displaying raw CPTu data. 
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Figure G.3  Assign names and units to the data columns after they are loaded into the 
software InSituData 
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(a) 

 

 
(b) 

 
Figure G.4  Calculate parameters from the raw CPT data: (a) Select the parameters to 

calculate; (b) Calculated parameters displayed. 
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Figure G.5  Input equations into the software program InSituData 
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(a) 

 

 
(b) 

 
Figure G.6  Visualization of SCPTu data and derived parameters in the software 

InSituData: (a) Display of the SCPTu data and derived parameters in separate plots; (b) 
Configuring of the plots. 
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